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Abstract

A general method for designing a laser system is presented. Using the Ti:sapphire laser
as an example, the requirements of stability, astigmatic compensation, and matching
of the pump and cavity modes are addressed. Investigations into the relaxation
oscillations of a Ti:sapphire laser are reported. Using four level laser rate equation
theory, a technique is developed for analyzing relaxation oscillations exhibited by a
laser. This technique presents a new and simple method for measuring the upper
state lifetime and intrinsic cavity losses of a laser system. Beam-like vector solutions
to Maxwell’s equations are also presented. These solutions present a more detailed
description of the polarization properties of laser beams. Experimental evidence of

these properties is shown using an Argon laser.
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Chapter 1

Introduction

The Ti:sapphire laser has been the subject of continuing research since it was first
introduced by Moulton [1] as a broadly tunable solid state laser. Because of it<
broad tunability (= 630-1200 nm). high output power. and demonstrated stability.
the Ti:sapphire laser is gaining prominence in many areas of research. These areas
include high resolution spectroscopy and high energy laser applications.

Many areas of high resolution spectroscopy research require frequency stabilized.
single-mode. continuous wave (cw) lasers. Although dve lasers have been dominant
in this field, the Ti:sapphire laser offers the advantages of wide tunability. ease of nse.
and increased stabilitv. The dominant absorption band for Ti:sapphire is centered
around 500 nm, allowing direct pumping with an argon ion laser for cw operation and
doubled Nd:YAG lasers, dye lasers. and flash lamps for pulsed operation. Active fre-
quency stabilization involves a reference cavity (Fabry Perot). some type of feedback
to the laser cavity, and an intracavity compensating element. By actively stabilizing
a Ti:sapphire laser, a frequency stability of 1 kHz rms relative to the reference cavity
has been observed [2]. Stabilized Ti:sapphire lasers have been used for examining
the hyperfine structure of the D lines and the absorption spectroscopy of the 35 —3D
transition in rubidium [3]. A similar Ti:sapphire laser was used to investigate the
two-photon excitation of the 25—4S transition in atomic hvdrogen [4]. Other areas
of spectroscopic research require broadly tunable short laser pulses of relatively high
energy. This is another area where the capabilities of the Ti:sapphire laser are being
exploited. Various methods for active and passive mode locking of a Ti:sapphire laser
have been employed to generate high power pulses in the femtosecond regime [3. 6. 7.

High energy laser applications. such as future remote space sensing systems. have

generated the need for studyving the energy output capabilities of Ti:sapphire lasers [N,




Output powers of 0.5 terawatt for 125-fs pulses have been observed using the technique
of chirped-pulse amplification [9]. For ¢w operation. 350 watts of output power has
been proposed using a liquid nitrogen-cooled Ti:sapphire laser {10].

Other areas of research where Ti:sapphire lasers may be useful are nonlinear optics.
laser cooling, and trapping of atoms. Because of the many possible and diverse
applications for a Ti:sapphire laser. there is a need for a general method for designing
simple and flexible Ti:sapphire laser cavities from which a specific laser system can
be constructed.

Although most of the current research involving the Ti:sapphire laser is centered
around areas of specific application, little attention has been paid to the study of the
dyvnamical behavior of this laser system. One particular dynamical behavior of interest
is the relaxation oscillations exhibited by the Ti:sapphire laser. These oscillations
characterize the behavior of certain laser systems when thev are perturbed from
steady state. Relaxation oscillations have been observed and studied in a number of
other laser systems including ruby [11], dyve [12] and copper-vapor [13]. By studyving
these relaxation oscillations, one can gain a greater insight into the parameters that
drive the dynamics of the laser. Recent studies in the ultra-high speed relaxation
oscillations (up to 39 GHz) of vertical cavity surface emitting diode lasers indicate
potential application in the area of optical interconnect [14].

In this thesis, w> present a general method for designing a Ti:sapphire laser that
can be customized for specific research applications. We also report on investigations
of the relaxation oscillations of a Ti:sapphire laser that we constructed. To our knowl-
edge. these are the first such investigations to have heen carried out on a Ti:sapphire
laser system. By analyzing the relaxation oscillations. we measured the upper state
lifetime and the intrinsic cavity losses of our laser. Qur method for analyzing these
oscillations presents a simple and new technique for measuring these important laser
parameters.

In Chapter 2. we review the propagation characteristics of laser beams including
their transformation characteristics through optical elements. With this foundation.
we describe a technique using ray transformation matrices in Chapter 3 to address the

problems of stability. astigmatism. and mode matching in the design of a laser system.




We also describe the design of a specific Ti:sapphire laser. In Chapter { we discuss
the theory of relaxation oscillations based on two simplified laser rate equations. We
then develop a method for analvzing the relaxation oscillations exhibited by certain
lasers which allows us to measure the upper state lifetime and the intrinsic cavity
losses of a laser system. Chapter 3 describes two sets of experiments conducted with
our Ti:sapphire laser. The first set involved the study of the relaxation oscillations
generated by cavity loss modulation. The second set of experiments was conducted to
determine the intrinsic cavity losses of our laser by an independent method. Finally.
in Chapter 6 we describe vector beam-like solutions of Maxwell's equations. We use
these solutions to discuss the polarization properties of Gaussian laser beams. We

also present experimental evidence representing these solutions.




Chapter 2

Propagation of Laser Beams

Any study of lasers must involve a basic understanding of the propagation character-
istics of laser beams. To this end, we begin this chapter with a review of the wave
nature of light and its propagation characteristics in free space (vacuum). We then
derive the paraxial wave equation, which describes propagation of electromagnetic
waves (beams) whose energy is concentrated near the axis of propagation. and look
at a particular beam-like solution to this equation. Finally, we will see how laser

beam parameters are transformed as they pass through various optical elements.

2.1 Propagation of Electromagnetic Waves

The behavior of an electromagnetic field is governed by Maxwell's equations. which

for free space can be written in the form

V-E(r.t) = 0, (2.1)
VxE(rt) = —QB—(();J—)- . (2.2)
V.-B(r,t) = 0. (2.3)
UV xB(r.t) = ;12-2%;—9- (2.1)

where ¢ is the speed of light in free space. E(r.t) is the electric field and B(r.?) is
the magnetic field. If we eliminate B(r,t) from these equations by taking the curl
of Eq. (2.2} and the time derivative of Eq. (2.4). we obtain a closed equation for the
electric field. Using the fact that time and space derivatives commute and the vector
identity

Vx(VxE)=V(V-E)-V3E. (2.

N
-t
~—




together with Fq. (2.1). we find that the electric field satisfies the wave equation

I o?

V2 ——E(r.t)=0. (2.6)

( (2 ()H ( ) . ))

Similarly, by taking the curl of Eq. (2.4) and the time derivative of Eq. (2.2) we

can show that the magnetic field also satisfies the wave equation. This means that

Maxwell's equations admit wave-like solutions and each component of the E field and
B field satisfies the scalar wave equation

1 &
(Vz—‘c_‘za—ﬁ')\l’(r.f)ZO. (2.

[ 25
-1

The solutions of this equation are of the form:

fFz/e) plane wave
W(r.t)=1{ Lf(t¥rfc) spherical wave (2.3)
%f (t ¥ p/c) cylindrical wave

where W(r,t) represents any component of E(r.t) or B(r,¢). The particular form of
the solution chosen depends on the symmetry of the problem. In describing laser
propagation. we are interested in quasi-monochromatic fields (coherent light). so we
desire solutions of the form

WU(r.t) = W, (r)e™ ™", (2.9)

If we substitute this solution into the scalar wave equation (2.7), we find the space

dependent part. W,(r), satisfies the Helmholt: equation

2

\2
(v%i—) W (r)=0. (2.10)

Perhaps the most familiar solution of this equation is the plane wave solution. We

can represent a plane wave propagating in the z-direction by
W, (r) = 1,6, (2.11)

where v, is a constant and the propagation constant k is related to the wavelength

and angular frequency of the wave by

s, T
c \ )

ot




The E tield of a plane electromagnetic wave is then written as
E(r.t) = Ege'*: 7+ (2.13)

and the B field as
B(r.t) = k x Ew’"-*") ) (2.1
C

For plane waves. Eq is a constant vector. These two equations satisfv Eqgs. (2.2) and

(2.4). Maxwell's equations (2.1) and (2.3) require

k-E(r.t)=k-B(r.t)=0. (2.15)
Then the energy flow as defined by the Poynting vector
S = ‘1 ?Re(E’xB)=%eocEjic (2.16)
2, 2

is in the z-direction as expected. Although the unidirectional propagation of plane
waves is characteristic of laser beams, the fact that the wave has the same amplitude.
W, (r) = v,e'*?, for the entire plane z = constant is not characteristic of a laser beam.
In addition to a predominant direction of propagation, laser beams also have a tinite
extent in the transverse direction. We therefore look at other potential solutions of
Eq. (2.10) that mimic these properties of laser beams.

The second important solution of Eq. (2.10) is the spherical wave. which can be
written for r # 0 in the form

¥,(r) = ée“" . (2.17)

where A is a constant. This represents a wave of constant amplitude over a sphere

of radius r. Since we are interested in the predominantly unidirectional propagation

of a wave, we restrict ourselves to a small cross-section of the wave near the :-axis

(paraxial) at a distance - = R away from the origin. or the point source. For these
points close to the z-axis, we can write r as

« 1/2

_ R l 1.2 + y2 /

r=R{L+

and since r? + y? <« R? for the paraxial points, we can approximate r. using the

binomial expansion, by
24yt
2R

rx~ R+ (2.19)

6




The spherical wave solution on the z-axis at - = R can then be written as

A R ket ee))
W,(r) = Ee'““("“ +yh)/2R (2.20)

for distances far from the source. Because of its small relative magnitude compared to
R. the second term in Eq. (2.19) can be neglected in the denominator of Eq. {2.20).
It must be kept in the exponential term however. because there it is compared to
a wavelength. In Eq. (2.20), R is the radius of curvature of the phase fronts. We
now have a solution to the Helmholtz equation which has a non-uniform amplitude
in a plane perpendicular to the z-axis. We will see that this solution suggests very

important “heam-like” solutions to the paraxial wave equation. which we derive next.

2.2 The Paraxial Wave Equation

We are interested in solutions that give a finite transverse extent and vet travel

predominantly in the z-direction. To this end we propose a solution of the form
W, (r) = w(r)e** (2.21)

where v(r) describes the transverse profile of the beam. Substituting this into the

Helmbholtz equation (2.10) and using the fact that k = «/c. we obtain

9? ? L ou(r)  %u(r)] .
—m— —— Iy Nk ks . 92D
[(31:2 + 3y2) w(r) + 2ik 0z + 0z? ¢ 0 (

[E]
(8™
o
—~—

We now assume that the = dependence of v'(r) is slow. This means that the transverse
profile of the beam does not vary significantly over distances comparable to the optical
wavelength A = 2r/k. In other words, the beam spreads slowly as it propagates in
the = direction. This assumption is known as the pararial approrimation and is

represented mathematically by the conditions

8‘7
L,(r) < kle(r)] . (2.23)
a:

¢2w‘ ¥ .

da"’f_f) < 2k 0?(~')iand|v%u(r)| (2.24)

~1




where the transverse Laplacian is given by

0P
Vi = + (:

et oy

<
te
ot

Under the paraxial approximation. the Helmholtz equation (2.10) leads 1o the pararial

ware equation:
de(r)

V() + 20k =0. (2.26)

Before we look at specific solutions to this equation. let us investigate the validity
of the paraxial wave approximation. Suppose we have a wave traveling i the »-:
plane whose k-vector makes an angle § with the z-axis. Since we can always describe
a wave as a superposition of plane waves. we can represent the wave component in

the r-z plane as

\Do(.l'.:) — "161kszrxt9:+ik0u50: = (I‘ :) thz (3 37)
where
L'(J‘. :) — ‘Afiksul&r«}-ck(cos@—l): . ‘3—)3)
We then find for each term in Eq. (2.24):
dPe(r.z) ) ) D e
Q5 = —k*(cos® — 1) (r.7) {2.29)
Ao (r. 2 A
2i1\‘£L—£j’T——) = —2k%(cost — ) (r. ) (2.30)
20 -
Q_cT(r:__) = —k*sin®0(r.z) (2.31)
Jr?

Using the approximations sinf & 6 and cosf — 1 = 6%/2. we find that Eq. (2.21) leads
to the inequality
NI §?
Mo < kg’ = T < (2.32)

Thus the paraxial approximation is good as long as this inequality is satistied. 1If
we sav that two orders of magnitude is sufficient to call the approximation valid.
then the inequality holds for # < 0.2 radian or 12°. This means the paraxial wave
approximation is valid as long as the beam does not converge or diverge outside of a
cone of = 24°, or as long as most of the plane waves comprising the beam have their

k-vector nside a cone of = 21,




2.3 Gaussian Beam Solutions

We now recall the spherical wave solution. Eq. (2.20) derived in Section 2.1. Since it
is a solution to the Helmholtz equation (2.10) in the paraxial approximation. it must
also satisfy the paraxial wave equation. We generalize the form of the spherical wave

solution such that it has a Gaussian transverse profile.

v(r) = AeHT ) 2l reta) (2.33)

where A is a constant and we introduce the compler beam parameter g(=) and a
compler phase shift p(z). Requiring Eq. (2.33) to be a solution of Eq. (2.26) alluws
us to determine the parameters () and p(z). With v(r) given by Eq. (2.33). each

term in Eq. (2.26) can be written as

d° ik k?r? o
'O:;U‘( r) = (;(':‘)' - qz(:)) w(r) (2.34)
9% ? k2y2) ) as
— Y = —_— 41 :_,.3.‘
0y2"(r) (q(:) q*(=) ) (23]
J (2t +y?)de(z) | dp(z)
(.—3:1#‘(1‘) = (‘-lk 5 (z) ds +t o ) w(r) . (2.36)

With the help of these, we find that Eq. (2.26) becomes

k? 2\ [da(z) dp(z) i e w2 ) 200 )+ ipl =
4 [ ’ r? + 2 ( - 2%k ]| ekt ty M2qiz)+p(z) 0.
o d= (e
(2.37)
To satisfy this equation. we must simultaneously have
dq(=) dp(z) _ 1 .
—_— =1 and —_—— (2.38)
d: d: q(z)
Integrating Eq. (2.38). we find
g(z) =¢q, + = where ¢(0) = ¢, (2.39)
p(z) = iln Tt where p(0) =0 . (2.10)
qu

In order to understand the physical significance of the complex heam parameter

q(z). we write it in terms of its real and imaginary parts by introducing two real beam

9




parameters R(:) and w(z) as

1 1 y A Al
= . 241
q(z)  R(z) rwd(z) '
In the plane - = 0 this equation leads to
1 1 1 A ,
— = — i (2.42)

q(0) - a; R, Tw?

If we choose = = 0 to be the point where R, = x. then ¢, is pure imaginary and we

can write
1 A )
—=i——=—, (2.13)
qs Tw?: oz,
where
rw?  kw? .
T, = ———— = ——— (2.11)
A 2

Using Eqs. (2.43) and (2.44) we can rewrite Eq. (2.39) as
@z) = —tz, + ¢ (2.45)

and Eq. (2.41) as
L1 1g
9(z) gtz 1+:/g
Separating the real and imaginary parts of Eq. (2.46) we find

1 z/z? RV

(2.16)

= , . 247
@) " TraE TR A =4
Comparing Eq. (2.47) with Eq. (2.41) we find that
-2
R(:)=:4= (2.43)
and
' =2
u'(:):uro\J (1+72) . (2.19)

Making use of Eq. (2.43) in Eq. {2.40) we can write the expression for p(z) as

. ) -
P(:):iln(1+i—:—>Eiln,’l+€.2._tan—1(_:_> . (2.50)

10




Finally. nsing Eqs. (2.41) and (2.30) in Eq. (2.33) and letting p* = r? + y?. we can
write the (Gaussian beam solution as

‘_\e-zmn"(:/:,,)

vir) = ——————
61+ 222

In terms of the expression for w(z) from Eq. (2.49) we write the full solution to the

¢ ko [2R(:) =0 [ (z) (2.51)

paraxial wave equation in the form

\po(r) — .‘1(L‘l., Eilcﬁ>2/'2R(:)-—,’)2/11'2(:)ti[k:—tan_l(:/:,,)] ] (:

w(z)

We are now in a position to understand the physical significance of w(z). -, . and

(S
st |
e
—

R(z) and how they characterize Gaussian beams. If we look at the intensity of a wave

of total power P,

1 e, Adw? _ 2P . 2.
I(r) = =ce, |E(r)]* = ol Mo e=207/u?(e) — 2 -27/w?(2) (2.53)
2 w?(z) Tw?(z)

we see a Gaussian distribution in the transverse direction with w(:) representing the
characteristic width of the beam or the beam’s spot size at the plane intersecting the
beam axis at :. The meaning of “spot size™ is not uniform in the literature. For
our purposes. we define the spot size to be w(z) and therefore 2u(:) represents the
diameter of the beam. The plane intersecting the beam axis at = = 0 is known as the

beam waist. From Eq. (2.49) we see that the spot size is minimum at the beam waist
w(0) =w, . (2.51)

A diagram of the beam waist region of a Gaussian beam is shown in Fig. 2.1. The
length scale over which the beam’s spot size grows in the direction of propagation is
determined by the quantity z,, known as the Rayleigh range. defined by Eq. (2.44).

From Eq. (2.49) we can see that

w(z,) = V2w, {

o
-t
51|
—

so the cross section of the beam doubles over the length equal to the Rayleigh range.
The distance of 2z, from —:z, to z, is referred to as the confocal parameter of the

beam. the distance over which the beam remains approximately collimated.

11




Figure 2.1: \ diagram of the beam waist region of a Gaussian beam. The beam waist
is the plane : = 0. The minimum spot size is found at the beam waist and has a
diameter of 2w,. The angle of divergence of the beam is represented by # and the
radius of curvature of the phase fronts is given by R(z).

To understand the physical significance of R(z). we compare the full Gaussian
beam solution. Eq. (2.32). with the spherical wave solution. Eq. (2.20) and see that
R(z) represents the radius of curvature of the phase front. This radius of curvature is
infinite at the beam waist. where the beam is collimated. In the far field. the radius
of curvature is approximately equal to :. By convention. for a beam traveling in the
positive = direction. R(z) > 0 for a diverging beam and R(:) < 0 for a converging
beam. It is interesting to note that if the quantity z, and the beam waist location
is known. all other information concerning the Gaussian beam at any other point in
space can be determined from Egs. (2.44) - (2.49). This means z, uniquely determines
a Gaussian beam.

We saw in Section 2.2 that the paraxial approximation would be valid if the
solution did not diverge at an angle greater than approximately 12° (or = 1/4 radian).
We solve for the beam divergence angle of the Gaussian spherical wave solution by

evaluating Eq. (2.49) at = >> z,. With the help of the binomial expansion we find

Wy zA -
w(z>> ) x — = . (2.56)
% Tw,
The angle of divergence is expressed as
w(z A .-
ztan0=£:——. (2.57)
z Tw,

12




Thus as long as the minimum spot size is larger than a few wavelengths. a conditioun
which is fulfilled for most laser beams. the paraxial approximation is expected to
hold.

The solution we have assumed in this section is the so called fundamental solu-
tion. In general. there are other solutions of the paraxial wave equation (2.26). For
rectangular symmetry. there are the Hermite-Gaussian solutions, which have the form

UmnlPF) = Amn&-Hm (\/Er) H, (\/fy) exp[—i(m +n + L)tan™'(z/z,)] x
w(z) w(z) w(z)
expltk(z? + y*)/2R(z) — (2% + y*) Ju?(2)] . (2.5%)

Here H,(r) represents a Hermite polynomial of order n and argument r. For c¢vlin-
drical symmetry, the solutions are known as Laguerre-Gaussian solutions and are of

the form

2 _ 9o\ 2p?
U (r) = A\/ = e2Fm+1) _\/:p Ly __...p
(1 + bom )7l + m)! w(z) w2(z)

x expltkp®[2R(z) — p*/w?(z) + imo] . (2.59)

where L*(r) refers to an associated Laguerre polynomial of degree I. For most appli-
cations, the fundamental solution is the desired solution. and is therefore most often
encountered in the literature. We now look at the effect of various optical elements

on a Gaussian beam.

2.4 Transformation Characteristics of Gaussian Beams

We have seen that for free space propagation laser beams may be represented by a
(iaussian spherical beam solution to the paraxial wave equation. We now investigate
how these beams are transformed as they pass through various optical elements.
Specifically. we are interested in how ¢(z) transforms as the beam propagates.

We start with the example of free space propagation. According to Eq. (2.39).
an initial heam parameter. ¢;. will transform into the final beam parameter ¢; after

propagating through a distance d by
g9 =¢q +d. (2.60)
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If we represent this transformation by the equation

.4(],‘ + B

= — (2.61
U= Fu D )

we can write the coefficients in the beam transformation matrix

A B 1 d
— . (2.62)
C D 0 1

We now take the example of a thin lens with a {ucal length f. which transforms a

spherical wave of radius R; incident from the left into a spherical wave of radius K,

exiting the lens to the right according to the equation

111 .
Rf —_— Rl f. ....)-l

For a Gaussian beam incident on a thin lens, we expect the radius of curvature to
be transformed as in Eq. (2.63). but the spot size just to the left of the lens should
be exactly the same as the spot size just to the right of the lens. We can therefore
relate the transformed beam parameter, gy, just after the lens to the incident beam

parameter, ¢;. just before the lens by

1 1 1
—_—=—— (2.64)
g ¢ f
Solving explicitly for gy,
af qi

qgs = = .
T = —q/f+1
we can write the beam transformation matrix for a thin lens

A B _ Loy (2.66)
C D -1/f 1

These two specific transformations are examples of the general ABCD law for

Gaussian beams [15]. The transformed ¢ parameter of a Gaussian beam can be
obtained from Eq. (2.61) where the coefficients are determined from the ray transfer
matrices of geometric optics.

In this chapter we have reviewed the propagation of electromagnetic waves and

saw how they can be used to represent laser beams. From a scalar treatment of
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Maxwell's equations. we derived the paraxial wave equation. Beam-like solutions to
the paraxial wave equation characterize most of the propagation characteristios of
laser beams. For Gaussian beam solutions. these characteristics are determined from
the complex beam parameter ¢(z). The manner in which a Gaussian beam transforms
through optical elements is determined from the ray transfer matrices of gecmetric
optics. These matrices will play an important role as we design a laser system in the

next chapter.




Chapter 3

Laser Design

Solid state lasers have proved to be widely tunable and simpler to use than dve
lasers. They are finding increasing use in spectroscopic and nonlinear optical experi-
ments. Because of broad tunability. in order to minimize losses. one must use crystals
with Brewster windows. This presents the problem of how to compensate for the
astigmatism induced by Brewster surfaces and other nonparaxial elements. For most
applications, cylindrically symmetric (TEMg) beams are needed. In this chapter we
present a general method that allows us to compensat~ ~~tigmatism using curved mir-
rors. Our objective is to design a tunable singl -frequency. single-mode Ti:sapphire
laser. We begin our discussion of laser system design with a comparison between
standing and ring cavity designs. We then describe the stability requirements for
a laser cavity and address astigmatic compensation. The problem of matching the
pump mode irto the cavity mode is considered next. We use our cavity design as an
example. Finally. we describe various intracavity elements that can be used to make

the laser unidirectional and tunable to single wavelength.

3.1 Ring versus Standing Wave Cavity

The first consideration in designing a laser is to choose between a standing wave or a
ring cavity to optimize the particular laser system. A standing wave cavity is generally
simpler in design and offers the advantage of the electromagnetic wave passing through
the gain medium twice during a round trip in the cavity. One disadvantage of a
standing wave cavity however is spatial hole burning. The electromagnetic field inside
a standing wave cavity may be considered to be the superposition of two oppositely

propagating traveling waves. The interference between these two waves sets up nodes
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inside the cavity (and hence inside the gain medium) where the intensity of the

electromagnetic wave goes to zero. Between two nodes is an antinode corresponding
to intense fields. The result is periodic gain depletion or “holes burned™ at the spacing
of A/2 inside the gain medium. Therefore. standing wave cavities do not ntilize the
gain completely and various grating effects can occur. The problem of spatial hole
burning is overcome in a ring laser. where no standing waves exist. Another advantage
of ring lasers is found in the pumping scheme. Many solid state lasers require optical
pumping of the gain medium, which is often accomplished with another laser. In a
standing wave cavity. part of the pump beam can be reflected back onto itself. causing
interference and stability problems, especially in situations involving longitudinal
pumping schemes. In a ring laser, such reflections or feedback are not present. A\
disadvantage of a ring laser is the directional mode competition which may result
in large intensity fluctuations. This directional competition can be suppressed by
introducing a Faraday rotator and waveplate assembly as described in Section 3.3.2.
Finally, the design of a ring laser generally affords for easier introduction of intracavity
elements with the second beam waist and extra space available in the long arm. One
beam waist is in the middle of the crystal (gain medium) and the other is at the center
of the long arm and is available for elements such as atomic vapor cells and nonlinear

crystals. For our specific needs. we opted for a ring cavity for our Ti:sapphire laser.

3.2 Stable Cavity: The Ray Matrix Approach

Once the choice between a standing wave and a ring cavity has been made. the
stability of the laser cavity must be addressed. While certain high power applications
may require the use of an unstable resonator. most spectroscopic applications involve
stable laser cavities. We address only this type of cavities in this section. Although
we look at the specifics of a ring cavity. the general procedure outlined applies to
standing wave cavities as well. To determine the stability of a cavity. we must first
review some basics from geometrical optics.

Light propagation can be described in terms of ravs. which are geometric curves

representing the direction of propagation of energy. In most cases we are interested
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Figure 3.1: A basic ring laser design consisting of a crystal of length 2¢. two curved
mirrors with radius of curvature R, and two flat mirrors to steer the beam in the long
arm. The distance between the curved mirrors and the faces of the crystal is d and
the length of the long arm from M1 to M2 is L. The crystal has Brewster surfaces at
both ends, and the long and short arms are taken to be parallel. Angle 8 is one half
the fold angle of the laser and represents the angle of incidence for all cavity mirrors.

in light propagating predominantly in a single direction. We chose this direction to
be the z-axis and refer to it as the optic or cavity axis. At any given point in space.
we can then describe a light ray with two parameters. The lateral displacement off
the z-axis at a specific z location is given by r(z) and the slope of the ray at : is
dr/dz = r'(z). If we form a column vector from these two parameters, we can obtain
the ray at a distance z from the original ray (at z,) by the transformation

r(z) _ A B r(z,) (3.1)

r'(z) C D r'(z,)
where the ABCD transformation matrix (or the ray matrix) depends on the optical
element through which the ray passes. The specific parameters for various optical
elements can be derived from the laws of geometric optics and are available in many
optics and laser textbooks [16. 17. 18]. The matrices most often used in designing
laser cavities are reproduced in Table 3.1 for reference.

The round trip matrix represents the transformation of a ray after one round trip
through the cavity. This matrix is found by multiplying in sequence the matrices of
each optical element that is encountered by a ray in one round trip. An analysis of this
matrix gives us the stability region. beam spot size, and beam waist locations inside
the cavity. For a basic ring laser as depicted in Fig. 3.1. we have two beam waists.

one at the center of the crystal and one in the center of the long arm. A knowledge
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Free space propagation of distance d inside
a medium of refractive index n.

Thin lens with focal length f.

Curved mirror with radius of curvature R
at an angle of incidence 0, tangential plane.

|

1 0
—~2/Rcosf 1

Curved mirror with radius of curvature R
al an aungle of incidence 6. sagittal plane.

|

1 0
—2cos0/R |

Flat interface between air and medium
with refractive index n at Brewster's an-
gle. tangential plane.

Flat interface between air and medium
with refractive index n at Brewster’s an-
gle. sagittal plane.

Table 3.1: Transformation Ray Matrices for Optical Elements
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of the beam waist location and spot size is necessary for mode matching and efficient
pumping of the cavity mode volume by the pump laser. Using the ray transformation
matrices from Table 3.1. we find the round trip matrix in the tangential plane for

starting at the center of the crystal to be
A B

Lt/ n 0 1 d 1 0
ce Dl 1o o 0 I/n | |0 1|}| —2/Rcost 1
X[IL:I[ 1 0}[1(1][1/710]{1!/11]' 32)
0 1 —2/Rcos6 1 0 1 0 n 0 1

Here 2t is the length of the crystal along the optic axis, d is tue distance between

either curved mirror and the face of the crystal. and L is the total length of the long
arm (free space propagation). For notational purposes, the subscript ¢ refers to the
tangential or the horizontal plane containing the optic axis and the subscript = refers
to the sagittal or vertical plane containing the optic axis. We will use the superscript
c to refer to the bearn waist at the center of the crystal and the superscript { to refer
to the beam waist at the center of the long arm. If we define the optical path length
between the two curved mirrors in the tangential plane as

21, = —2% +2d . (3.3)

n

then the round trip matrix is simplified and its elements can be written in the forn

T "~ Rcosd Rcos8 ) (3.-
21 21
e Ul U+ L1 = == : 3.5
K " (1 Rco.s&) [ e+ I (1 Rcosﬁ)] (3.5)
. 1 L ‘.
¢ = —7123(‘050 <1 B Rcos()) ) (3.6)
bo= 4. (3.7)

For the sagittal plane. each Rcos6 term is replaced by R/cosf and the Brewster's
interface matrices become unit matrices. Defining the optical path length between
the two curved mirrors in the sagittal plane as

2t

200 = — 4+ 2d.. (3.%)
n
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the elements of the round trip matrix for the sagittal plane can be written

" 5[4 Lcos | 2. cosb | 3
A 2 5 " : (3.9)

2,cos6 2l cosb
B = [1-= 2, + L - =2 . 3.
s ( R ) [ s + (1 7 )] (3.10)

b
I

o= {cosb | Lcost LI
+ T TTR R ) ks
Di = A, (3.12)

Once each element of the round trip matrix is known for a given plane. the stability
conditions can be derived. Since the ray is transforined by the AB('D matrix in each
round trip through the cavity, we are interested in the range of the parameters that

allow rs(z,) and r%(z,) to remain finite as N goes to oc in the matrix equation

N
[ ro(s) ] _ [ ri(z,) } ‘ (3.13)
(=) rol=)

For this to be the case, the eigenvalues of the round trip matrix must be less than or

A B
¢ D

equal to unity. This leads to the range of parameters or region of stability defined by
the inequality

—1<m<1, (3.14)
where the parameter m is given by:

A

+

D . (3.13)

m =

~

A complete derivation of the region of stability using eigenrayvs and eigenvalues of the
round trip matrix can be found in [17. pages 599-602]). For our round trip matrix.

A = D, som= A and the stability condition becomes
~1<A<I. (3.16)

This condition must be satisfied simultaneously for both the tangential and sagittal
planes. We are interested in near confocal spacing between the curved mirrors. In

order to investigate the sensitivity of cavity stability in the vicinity of confocal spacing.
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we introdiuce a sensitivity variable é by writing the actual distance between the curved
MITTOrs as

A=2d+2t=R+6. (3.1%)

where R is the radius of curvature of the curved mirrors. In terms of the optical path

lengths 2/, and 2[, introduced earlier. we can write

A t
o= Rt b-2(1- =) = R+6-2. (3.13)

n

and |
21,=R+6,—2t<1——)=R+6,—2ts. (3.19)

n

where &, represents the é variable in the tangential plane. 8, represents the ¢ variable

in the sagittal plane. We also introduce the quantities ¢, and ¢, by

tt=t<1—L) . (3.20)

3
and |
t,:t(l—-) . (3.21)

Using Egs. (3.18) and (3.19) in Egs. (3.4) and (3.9). we obtain the region of stability
defined by Eq. (3.16) in terms of é for each of the planes

R%cosf — LR(1 — cosh)

Qtt'—R(l -COSB)S 6; 52t1+ T — Rcosf (}22)

1 — cosf R?* + LR(1 — cosb)
2, — — < b, <2, . 3.23
! R ( cost ) s + Leosd — R ( )

Figure 3.2 shows the region of stability for both the tangential and sagittal planes as
a function of the variables § and L. the free space propagation length. The angle of
incidence is 8 = 13° and the radius of curvature of the cavity mirrors is R = 10 cmn.
Figure 3.3 shows the region of stability as a function of the angle of incidence 6
and the sensitivity variable é for a free space propagatin length L = 100 cm and
R = 10 cm. For both figures, the upper boundary of stability in the tangential plane

is represented by the dashed line given by the equation

. R*cos8 — LR(1 — cosf)
=9 . 3.24
Ottma fet L — Rcos8 ( )
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The lower boundary of stability in the tangential plane is shown by the dotted line
given by the equation

btrn = 2t — R(1 — cosb) . (3.23)

The region between these two curves is the region of cavity stability for the tangential
plane. For the sagittal plane. the upper boundary of stability is represented by the

solid line given by the equation

R? + LR(1 — cosb)

b, =21, 3.26
ma * Lcos6 - R (3.26)
The lower boundary of the sagittal plane is given by
8on = 2, — R (1—1"33) (3.27)
cosf

and is shown by the dot-dashed line. The region between these two curves is the
region of stability for the sagittal plane.

A cavity is stable in both planes where the tangential and sagittal regions of
stability overlap. By choosing a value for é from this region. a stable cavity can
be designed for a given angle of incidence @ and free space propagation length L
by setting the distance between the two curved mirrors equal to 2/ as defined by
Eq. (3.17).

In order to determine the spot size at the beam waist in the long arm. we must
determine the round trip matrix from the center of the long arm. Using a procedure
similar to that used to obtain Eqgs. (3.4)-(3.7) and Eqs. (3.9)-(3.12). we find the
elements of the round trip matrix starting at the center of the long arm for the

tangential plane to be

L 1l L
[ _ _ _ t - 3.28
A = (1 RcosO) (l RcosO) Rcos® (3.23)
L L
C (- 21 ( - )] . 3.1
B (1 RcosO) [L+ A\~ Reost (3.29)
) 1 2!
= - S : 3.30
B Rcosf (l Rcosﬁ) ‘ (3.30)
Dt o= AL, (3.31)
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Figure 3.2: The stability region for a ring laser as a function of the sensitivity variab'
¢ and the free space propagation length L. The stability region in the sagittal plane is
the area between the solid and dot-dashed curves. These curves represent Eqs. (3.26)
and (3.27) respectively. For the tangential plane. the region of stability is the area
between the dashed and dotted curves, representing Eqs. (3.24) and Eq. (3.25). A
cavity is stable in the region where the stability regions of both planes overlap. For
these curves, 4.the angle of incidence is § = 13° and R = 10 cm.
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Figure 3.3: The stability region for a ring laser as a function of the sensitivity variable
¢ and the angle of incidence 8. The stability region in the sagittal plane is the area
between the solid and dot-dashed curves. These curves represent Egs. (3.26) and
(3.27) respectively. For the tangential plane. the region of stability is the area between
the dashed and dotted curves. representing Eqgs. (3.24) and Eq. (3.253). A cavity is
stable in the region where the stabilities of both planes overlap. For these curves. the
length of the long arm L is 100 cm.
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Stmilarly. the matrix elements in the sagittal plane are

Lcost 1l,cos0 Lcost
- — = - 3.32
A, (1 I ) (1 7 ) 7 (3.32)
LcosO Lecos8
! . q g
= - L+2,11 - . 3.3
B, (l B ) [ + ( R )] (3.33)
! 4cosd 2l,cos0 .
- ] —-=—, 3.3
C! = = (3.34)
D\ = A, (3.35)

The expressions for the round trip ray transformation matrices derived in this
section will allow us to determine the size of the Gaussian beam waists inside the
cavity. This information will be used to analyze and compensate for astigmatism in

the beam profile, as we now show.

3.3 Intracavity Beam Waists: Astigmatic Compensation

As seen from Table 3.1, the transformation of a Gaussian beam at a curved mirror
and at an interface between media of different indices of refraction is different for the
tangential and sagittal planes. The tangential plane is the plane of incidence. The
sagittal plane is perpendicular to the plane of incidence. This difference in trans-
formation between planes is one source of astigmatism in laser systems. Nonnormal
incidence at curved mirrors is another source of astigmatism. The result is an asym-
metric transverse beam profile, which is usually undesirable.

In this section we describe a method for determining the spot size and the loca-
tion of the cavity beam waists. We then describe a technique for compensating the
astigmatism generated in the intracavity beam by the Brewster windows and curved
mirrors for the cavity shown in Fig. 3.1. A method for compensating astigmatism in
a standing wave cavity composed of three curved mirrors can be found in [19].

In Section 2.4 we saw that the coefficients of a ray matrix can be used to determine
the transformation of the complex Gaussian beam parameter ¢(z). For a stable cavity.
after one round trip. we require ¢y = ¢, = ¢, in Eq. (2.61). This leads to

Agq, + B

- 2%r3 3.36
9o Ce.t D ( )
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or

Cqgl+(D—-A)q—-B=0. (3.37)

Solving for 1/¢, we find

1 [%m4iVD2—&M%L¥+4CB

qo 2B QB

(3.33)

Since the determinant of each individual ray transfer matrix is equal to one, so also

must be the determinant of the round trip matrix
AD-CB=1. (3.39)

Using Eq. (3.39) in Eq. (3.38) we find that the complex beam parameter ¢, is given

by
1_D—Ain—M+DV (3.40
o 2B T 3B ' 240

Recallirg that 1/q, is pure imaginary at a beam waist. we see that A = D for the
round trip matrix starting at the location of one of the beam waists. For asymmetric
‘avities. one can solve for the location of the beam waists by allowing the starting
point for the round trip matrix to be represented by a variable and then requiring
that A = D. In the case of symmetric cavities, the waist location can be found by
symmetry. For the cavity shown in Fig. 3.1, the beam waists are located at the center
of the crystal and the long arm as confirmed by Eqgs. (3.7). (3.12). (3.31). and (3.33).

Another method for defining stable resonators is suggested by Eq. (3.40). By

requiring that the beam waist remain real. we obtain the condition
(14 D)¥ <4, (3.41)
for stability. This condition is equivalent to

: D
—1541_ <l = -1<m<1. (3.42)

r4

in agreement with the stability requirement Eq. (3.14) found in Section 3.2 using

eigenray analysis.




o determine the spot size at the beam waist. we recall Eq. (2.12) from Section 2.3.

We then find
A i=(4+ D)
=1 . (3.13)

Tw? 2B

Using the fact that A = D. the spot size of the beam at its waist in terms of the rav

matrix elements can be written as

AB 1?
w, = [;\/1——?—_———1—2} . (3.44)

Using the expressions for A and B given in Eqgs. (3.4). (3.3). (3.9) and (3.10). the

spot size at the beam waist at the center of the crystal in the tangential plane is

D [ (B -1 2L+ L (1 - 725)| Reost v e
Wor = | 5~ (E—L—O — 1) (3.15)
and for the sagittal plane it is
N G A (o 1 K
tos = Q_TT\ (% - 1) cosl (3:46)

Similar calculations at the beam waist in the long arm using the expressions for A

and B given in Egs. (3.28). (3.29). (3.32) and (3.33) yield

1/2

A (RC[:).!O - 1) [L + 2l (1 - -ﬁclm) Rcosd

Rcosb

{3.47)

for the spot size in the tangential plane and

Co A (L%ﬁ_l)“*?l,(l_g%ﬁ)}ﬁ 1/2

o 9 20, cos8
am 4037
! ( R 1) cosb

for the spot size in the sagittal plane.
In general. one finds that the beam waist spot sizes in the two planes are not
equal w, # w,,. However. we note that the spot size at the beam waists depend

on the adjustable variables 8. . and é. Therefore. by adjusting the curved mirror
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spacing 2/. the angle 8. and the cavity free space length L. we can find a regime where
astigmatism is minimized, or possibly removed, at least at one of the beam waists. In
the ideal situation. we want a symmetric beam both inside the crystal and in the long
arm. But since this may not be possible, or even desirable for all applications. one
must find the parameters that best fit a particular design. In most cases. the output
beam is required to have a cylindrically symmetric transverse profile. If the output
comes from one of the flat mirrors steering the long arm. then we try to achieve
w!, = w! in the long arm by choosing the proper values for é, angle 6, and free space
length L. for the given values of crystal length 2¢. index of refraction n. and radius
of curvature R of the curved mirrors.

A plot of the spot size (beam radius) at the center of the crystal and at the center
of the long arm is shown in Fig. 3.4. The variation of the spot size is shown as a
function of the free space length L for an angle of incidence § = 15.5°. Figure 3.5
shows the spot size variation as a function of angle of incidence 8 for a free space
length L = 100 cm. For both figures, the radius of curvature R = 10 cm. & = 1.5 cm.
and A = T80 nm, representing the average wavelength of laser radiation inside the
cavity. The solid curve shows the spot size in the sagittal plane at the center of the
long arm as given by Eq. (3.48). The dotted curve shows the spot size in the tangential
plane in the long arm as given by Eq. (3.47). For the beam waist at the center of the
crystal. the spot size in the tangential plane is depicted by the dashed curve and in
the sagittal plane by the dot-dashed curve. These curves represent Egs. (3.43) and
(3.46) respectively. From Figs. 3.4 and 3.3, we see that for a free space length of
[. = 100 cm. angle of incidence # = 13.5° and 4 = 1.5 em. the spot size in each plane
at the beam waist in the long arm are equal. Therefore, under these conditions. the
astigmatism in the long arm is fully compensated and the beam in the long arm is
circularly symmetric.

Since we chose to compensate or the astigmatism in the long arm. the transverse
profile of the beam inside the crystal remains asymmetric. This astigmatism must be
kept in mind when addressing the problem of matching the pump beam mode into

the cavity mode. This is the subject of the next section.
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Figure 3.4: Variation of the spot size w, at the two intracavity beam waists ax a
function of L, tte length of the long arm. For the beam waist in the long arm. the
dotted curve represents i, in the tangential plane as given by Eq. (3.47) and the solid
curve shows w, in the sagittal plane given by Eq. (3.48). For the beam waist at the
center of the crystal. the dashed curve represents w, in the tangential plane as given
in Eq. (3.45) and the dot-dashed curve shows w, in the sagittal plane according to
Eq. (3.46). For this plot. the angle of incidence is 15°. R = 10 cm, 6 = 1.5 cm.
and X\ = TR0 nm.
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Figure 3.5: Variation of the spot size w, at the two intracavity beam waists as a
function of the angle of incidence 8 for a free space propagation length L = 100 cm.
For the beam waist in the long arm, the dotted curve represents w, in the tangential
plane as given by Eq. (3.47) and the solid curve shows w, in the sagittal plane given
bv Eq. (3.48). For the beam waist at the center of the crystal, the dashed curve
represents w, in the tangential plane as given in Eq. (3.13) and the dot-dashed curve
shows w, in the sagittal plane according to Eq. (3.46). For this plot. R = 10 cm.
0 = 15cm.and A = 780 nm.




3.4 Mode Matching

Having determined the beam waists and spot sizes. we now address the problem of
coupling the pump energy as efficiently as possible into the fundamental mode inside
the cavity. For this to occur, we require the pump beam spot size and waist to
coincide with the cavity mode beam waist and spot size as much as possible. Our
initial treatment of the problem assumes a syvmmetric spot size at the beam waist.
In Section 3.3 we saw that this is not the case for our cavity. We therefore conclude
this section with a technique to introduce astigmatism in the pump beam to better
match the spot size inside the crvstal. Our objective is to optimize the spatial mode
matching of the pump and intracavity beams. A detailed investigation of the influence
of this spatial mode matching on the efficiency of longitudinally pumped solid state
lasers can be found in [20].

The theory of mode matching two Gaussian beams is developed in [15]. The basic
problem consists of placing a focusing lens in the path of a Gaussian beain to generate
a second beam waist at a predetermined point and with a predetermined spot size.
We call the distance from the first beam waist to the lens d; and the distance to
the second beam waist d;. Using the transformation matrices from Table 3.1. we
determine the transformation matrix for a Gaussian bean traveling a distance of d,.
then passing through a lens of focal length f, and finally through a distance of d,.

The resulting matrix is

A B _ 1 —dy/f di+dy—didy/f

- (3.19)
C D -1/f 1-di/f

Recalling Eq. (2.61). we relate the initial beam parameter g, to the final beam pa-

rameter ¢ by

{1l =dy/)qatdi +dy —didy/f
“T —a/f+ 1= di/f |

Requiring the initial and final points of the transformation to be beam waists. we use

(3.50)

Fq. (2.43). which describes the complex beam parameter ¢, at the beam waist. to

write ) o
irw W _
g = —\—l' and o = 2 (;)1 )
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Here 10y is the spot size at the original beam waist of the pump beam (inside the
pump laser) and w; is the “transformed™ spot size of the pump beam at the second
beam waist {inside the cavity). Substituting the expressions from Eq. (3.31) iuto

Eq. (3.50). we obtain

g \4 1 mwed d, dydy  imul d,
( A )f+ ) 7)==t 1o (3

Equating the imaginary parts of Eq. (3.52), we find

-t
[
—

f—d, U‘f 9 =
7—(12 = E— . (3.3:3)

and equating the real parts of Eq. (3.52) gives

(f—di)(f—dy) = f2 - f2. (3.34)

Here we have defined the characteristic focal length

fo = rw;uj? {3.55)
To satisfy both Egs. (3.33) and (3.54) simultaneously, we require
f>f- (3.56)

This means that if a pump beam having a spot size of w; at its original beam waist is
to be matched onto a second beam waist of spot size w,, it must be focused through
a lens (or focusing system) with a focal length greater than the characteristic focal
length defined by Eq. (3.55). We now look at the mode matching requirements of our
laser system.

The problem for our laser system is to find the optimum position and focal length
of a lens to focus the pump beam into the beam waist at the center of the crystal.
Collinear pumping of the crystal is desired to optimize energy transfer from the pump
source and simplicity of design. This requires the pump to be focused through one of
the cavity curved mirrors. A schematic of the various elements and distances involved
in our mode matching problem are shown in Fig. 3.6. The focusing lens has a focal

length f, and the mirror has a focal length of f,. They are separated by a distance a.
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Figure 3.6: A schematic of the optical elements used in matching the spot size ot the
pump beam to the cavity spot size at the beam waist at the center of the crystal.
The lens has a focal length f; and the mirror has a focal length of f,. These elements
are separated by the distance a. The effective lens is depicted with dash lines and
has a focal length represented by D. The distance between the cavity mirror and the
center of the crystal is s and A is the distance between the effective focusing lens and
the cavity mirror.

From basic optics [21], we know the effective focal length of two optical elements with

focal lengths f; and f, separated by a distance a is given by
1 1 1 a

fe—ff-z-ﬁ-}--f—z—fl—fz (3

The location of the “effective lens” is a distance

__af
fitfa—a

from the second element (cavity mirror). For our particular application. we can only

Ut
-1
~—

A (3.38)

vary the position of the lens. so we solve Eq. (3.57) for f;

- fz—a
fol fess =17

to estimate the focal length requirement of the matching lens. To match a beam waist

h (3.59)

with spot size w, to a beam waist with spot size w, using a lens as depicted in Fig. 3.6,

the effective focal length obtained from the “focusing system™ must be greater than
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the characteristic length f, defined by Eq. (3.33). Because of space limitations. one
should select a lens with as small a focal length as possible while still meeting all
other design requirements. The stability requirements outlined in Section 3.2 often
place stringent requirements on this focusing lens. since the cavity mirror must be a
minimum distance from the center of the crystal. Also. very small changes in the ¢
variable defined in Eq. (3.17) can result in large changes in the spot size at the center
of the crystal. These changes in turn result in large changes in the mode matching
requirements.

Taking our cavity design as an example. we obtain a value for the characteristic
focal length f, as follows. Pumping with all lines from an argon ion laser. we take the
average wavelength to be A = 500 nm. Matching a beam waist spot size of 1.3 mm
from the pump laser to an average spot size at the beam waist inside the crystal of
25 microns, we find

fo=28cm. (3.60)

Solving Eq. (3.59) assuming fe;; = f, and fa = =5 cm, from a 10 cm concave cavity

end mirror, we obtain the minimum focal length for the lens to be

fi 4+ %a : (3.61)

We see that the minimum focal length depends on the minimum acceptable spacing

between the lens and the cavity mirror. Assuming we want a minimum of 5 cm from

the mirror to the lens for mounting and adjusting, we have a minimum focal length
of

fi,., =8 cm (3.62)

for the focusing lens in our mode matching problem. For our laser system, a 10 cm
achromatic lens was selected to meet the minimum f; requirements. and allow for
variations in the pump laser. the value of §. spot sizes and cavity configurations.

The position of the “effective lens” from the beam waist inside the crystal is
determined from the formula

D=A+s=f, +2
U

fop =12 (3.63)
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where 10y 1s being matched to w,. The distance s between the cavity mirror and the
center of the crystal is determined by the value of ¢ according to Eq. (3.17). Since
this value is determined from the stability requirements of Eqgs. (3.22) and (3.23). we
consider it to be a constant for the mode matching problem. The value of s is given
by

s:%(R-}—é) . (3.61)
where R is the radius of curvature of the cavity mirror in the focusing system and &
is chosen from the stability diagrams (see Figs. 3.2 and 3 3).

To find the position of the focusing lens. we first solve Eq. (3.37) for f. ;s explicitly

_ hha
Jess = h+fi—a

Using Egs. (3.65) and (3.58) we rewrite Eq. (3.63) as

_ah ___hh wy fifa 2_ , o
f1+f2—a+»—f1+f2—a:tw1\J<_f1+fz_a) f3- (3.66)

(3.63)

In most applications, w; < wy and f.f;y = f,, so we neglect the second term and

solve for a

0~ hfe=s(fi+ f) _ fifo= Z(R+8&)(fL + f2) .

[ fo- NE+9) 3o

For a 10 c¢m lens (fy). a curved mirror of R = 10 cm (f; = —5 cm) and 6 = 1.5 cm
we obtain

axT73cm. (3.6%)

Thus by placing the 10 cm lens a distance of 7.3 cm behind the cavity end mirror. we
can focus the pump beam to its minimum spot size at the center of the crystal. In
pra-tice, this calculated distance is a “starting point™ for the laser design and should
be adjusted by trial and error to compensate fer the term neglected in Eq. (3.66) and
optimize the performance of the laser.

We saw from Section 3.3 that the spot size at the center of the crystal may be
asvmmetric. To effectively mode match the pump volume and the intracavity volume
inside the crystal. we need to introduce astigmatism into the pump beam. This can he

done by rotating the focusing lens about the vertical axis by a few degrees. In fact.
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some astigmatism is already present due to the nonnormal approach of the pump
beam on the curved cavity mirror. Calculations by Schulz [22] for a 147 angle of
incidence at the curved cavity mirror show a required rotation of approximately 3.
Our experience showed that a similar rotation in the focusing lens r=sulted in increased
output power.

In this section we have described the problem of matching the mode of the pump
beam to that of the cavity. We saw that this can be accomplished by proper selection
and placement of a focusing lens outside the cavity. We also briefly discussed how
astigmatism may be introduced in the pump beam to better match the cavity mode
volume. We now investigate various intracavity elements that can be used in the laser

system.

3.5 Intracavity Elements

The specific application for a laser system dictates the type of intracavity elements
required. In this section, we describe some intracavity elements that can be used
inside a laser cavity to meet design requirements. These include unidirectional lasing
and single wavelength operation. Our objective in this section is only to give a brief
overview of certain intracavity elements. A more rigorous treatment of the theory of
these elements can be found for example in [23].

Since some of these elements rely on the birefringent characteristics of certain

materials. we begin this section with a basic review of birefringence.

3.5.1 Birefringence

Birefringence. or double refraction. is a property of anisotropic crystals where the
index of refraction seen by incident light is a function of its polarization. Refractive
indices are determined from the dielectric permeability of the medium. Here we only
consider uniarial crystals. In these crystals, two axes defined by the crystalline struc-
ture have the same dielectric permeability while the third axis has a different value.
The axis with the unique dielectric permeability is referred to as the optic aris and

represents a unique direction of propagation inside the crystal. The electromagnetic
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waves representing the light incident on a birefringent medium are broken dowu into
components based on the orientation of the E field vector relative to the optic axis.
The components of the electromagnetic waves with the E field vector oriented along
the optic axis experience one index of refraction n, and travel at the speed ¢/n,. The
trajectory of these waves represents the ertraordinary beam. The components of the
electromagnetic waves with the E field vector orthogonal to the optic axis experience
a different index of refraction n, and travel at the speed ¢/n,. The trajectory of these
waves represent the ordinary beam.

The different speeds of the ordinary and extraordinary beams result in a phase
difference hetween the two types of electromagnetic waves. This phase difference is
represented by

2r

dsz(no—-ne) . (3.69)

where d represents the thickness of the birefringent medium. By varying this thickness
one can control the phase difference induced by the birefringence. If the overall phase
difference is ¥ = £ /2. then the birefringent crystal changes linearly polarized light
into circularly polarized light. provided the crystal is oriented so that the optic axis
1s at 45° to the plane of polarization of the incident beam. This optical element
is known as a quarter wave plate. If the overall phase difference is ¥ = +x. then
the birefringent crystal rotates the plane of polarization by an angle of 20. where
o represents the angle between the plane of polarization and the optic axis of the
crystal. Such optical elements are known as polarization rotators or half warve plates.
The direction of rotation is determined by the direction of propagation through the

birefringent crystal.

3.5.2 Unidirectional Lasing

A basic ring cavity. as shown in Fig. 3.1, allows for an electromagnetic wave to
propagate in both directions. This means that as the gain medium is pumped and
energy inside the gain medium builds up. the modes of each direction compete against
each other. This competition can result in bisiability or chaotic behavior. Many

applications for ring lasers require the laser to be stable and therefore the direction
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of lasing to be controlled. Thi. s usually accomplished by giving the cavity a favored
direction by suppressing or enhancing one of the directional modes.

One technique for introducing a favored direction inside the cavity is to reflect the
output from one direction of the cavity back onto itself with an external mirror. This
method has the effect of transferring a percentage of the energy from the undesired
directional mode to the desired directional mode. Mne drawback of this technique
is that pure unidirectional lasing cannot be obtained since energy buildup in the
unfavored direction inside the cavity is not fully suppressed. Furthermore. this type
of feedback may lead to phase and frequency instability.

To obtain unidirectional lasing. one must suppress the undesired directional cavity
mode sufficiently to ensure that the threshold condition for that mode is not met.
This suppression is often accomplished with an optical diode consisting of a Faraday
rotator and some type of optical compensator. The manner by which these elements
produce unidirectional lasing is as follows.

Laser systems usually contain surfaces oriented at Brewster’s angle with respect to
the cavity axis in order to minimize the insertion loss of intracavity elements. These
Brewster windows give rise to a dominant polarization of the electromagnetic wave
traveling inside the cavity. This dominant polarization is in the tangential plane. or
the plane of incidence defined by the cavity axis and the normal to the surface of the
Brewster window. This polarization component experiences no loss at the Brewster
interface.

Certain materials rotate the plane of polarization of the electromagnetic wave as
it passes through the medium. Birefringent crystals. alluded to in Section 3.5.1. are
such materials. Other materials rotate the polarization of an electromagnetic wave
when they are placed in a magnetic field. This effect is known as the Faraday ¢ ffect
and elements using this principle are referred to as Faraday rotators. The extent of
rotation of polarization per unit length. or the “rotary power.” of a Faraday rotator
is proportional to the intensity of the magnetic field and an intrinsic property of
the material represented by the Verdet constant. Unfortunately. materials with large
Verdet constants usually also have high absorption coefficients. This means that large

rotation angles can only be obtained at the expense of high transmission losses. The
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direction of polarization rotation is determined solely by the direction of the magnetic
field and is rherefore independent of the direction of propagation. In other words.
if the polarization of a wave changes by an angle o after passing once through a
Faraday rotator. it will have a total rotation of 20 if it is reflected back through the
same Faraday rotator in the opposite direction.

To induce loss in one direction inside the cavity and not the other. a Faraday
rotator is combined with a half wave plate. The half wave plate is oriented to com-
pensate for the rotation induced by the rotator. In one direction. the half wave plate
rotates the polarization back to its original orientation. For this direction. the wave
suffers no loss as it travels through the Brewster windows inside the cavitv. In the
other direction however, the waveplate adds to the rotation of polarization and the
electromagnetic wave is attenuated by traveling through a Brewster window. Even
with small rotation angles, the attenuation of the wave is usually sufficient to fully

suppress the undesired directional cavity mode.

3.5.3 Tuning to Single Wavelength

Lasers operating with broad gain medium require some type of wavelength selecting
device if single wavelength operation is desired. To fully utilize broad tunability.
we desire single wavelength operation with minimal loss to the desired wavelength.
We also want to have a high transmission bandwidth at the selected wavelength and
maximum rejection at the unwanted wavelengths. The optical element best suited
for these requirements is the birefringent filter.

Since their introduction as a tuning element for broadband lasers, the theoryv and
design of birefringent filters has been an area of active research [24.25.26. 27]. These
filters have been used as tuning elements in a number of broadband lasers. including
dve. high power Nd:glass. Ti:sapphire, and He-Set [28. 29]. The basic theorv behind
birefringent filters is as follows.

As was shown in Section 3.5.1. birefringent cryvstals can be used to rotate the
polarization of an incident electromagnetic wave. A birefringent plate which can be
used as a wavelength selecting devise is shown in Fig. 3.7. The birefringent plate is

placed into the laser cavity such that the normal of the plate is at Brewster's angle
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Figure 3.7: A birefringent plate used as an intracavity tuning element. The normal
to the plate is at Brewster's angle fg to the cavity axis. The optic axis of the
crystal makes the angle £ with the path of the refracted beam inside the crystal. The
thickness of the plate is d.

0 to the cavity axis. The refracted beam inside the plate travels in a direction that
makes the angle £ with the optic axis of the crystal. The phase difference induced
between the ordinary beam and the extraordinary beam of wavelength A after it has

travelled through the plate of thickness d is given by

2r(n. — n,)dsin?f

Y =

Asinfp (3.70)

Electromagnetic waves for which this phase difference is a multiple of 27 will experi-
ence no rotation in polarization and hence no attenuation as they pass through the
end surface of the plate at Brewster's angle. The wavelength of these waves can be
determined by setting ¥ = 2m~ in Eq. (3.70) and solving for A

(n. — n,)dsin?¢

msinfg

A= (3.71)

where m is an integer. Since the plate is introduced into the cavity at Brewster's
angle. all other wavelengths will suffer loss as they exit the plate.

In practice, birefringent filters are composed of a series of birefringent plates.
This is to provide stronger suppression of the undesired wavelengths and narrowing

the transmission bandwidth of the filter. By rotating the filter around the normal
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to the surface of the plate and hence keeping the plate at Brewster's angle to the
cavity axis. one can change the angle £ between the optic axis of the cryvstal and the
direction of the refracted beam inside the piate. From Eq. (3.71). we see that such a
change in € will result in a change in the “privileged™ wavelength which is transmitted
without loss. In this manner. one can tune the laser to a desired wavelength.

A more rigorous treatment of the theory and design of these filters can be found
in the references cited at the beginning of this subsection. For a study of cavity
modes containing birefringent filters see [30] and a detailed discussion of the stability
of birefringent plates can be found in [31}.

In this chapter. we have discussed the basic principles of designing a laser svstem.
We discussed the advantages and disadvantages of standing wave and ring cavities.
We presented an approach to the cavity design in terms of ABC D ray transformation
matrices and showed how they can be used to analvze the stability of laser cavities.
We also developed a technique for compensating for astigmatism in the intracavity
beam. We then discussed the mode matching problem and showed how to optimize the
pump mode coupling into the cavity mode inside the gain medium. We also presented
a brief survey of the intracavity elements that can be used for unidirectional lasing
and tuning the laser to a single wavelength. With an understanding of the basics of

laser design. we now turn our attention to the theory of laser dynamics.

10




Chapter 4

Laser Dynamics

An understanding of the behavior of any dyvnamical svstem requires a theoretical
framework within which the system dynamics can be analyzed. Such a framework
usually consists of a small number of equations of motion. These equations of motion
are derived for an idealized system that mimics the physical system under investiga-
tion as much as possible. In this chapter. we present two basic equations of motion for
a laser system known as the laser rate equations. We then show how these equations
can be used to analyze relaxation oscillations exhibited by certain lasers. Many solid
state lasers exhibit these oscillations. In particular, the Ti:sapphire laser described
in this thesis exhibits pronounced relaxation oscillations when perturbed by external
excitations from the steady state. We also describe a numerical method for modeling
the dynamical behavior of the laser within the rate equation approximation. Finally.
we look at the threshold condition for laser action and see how this condition can be

used to determine the intrinsic cavity losses of a laser system.

4.1 Laser Rate Equations

The treatment of laser dynamics using rate equation theory involves the exchange
of energy between two important dynamical variables, the number of photons inside
the laser cavity ¢ and the number of excited atoms n inside the laser gain medium.
These two quantities evolve in time according to the coupled cavity and atomic rate
equations. The derivation of these equations can be found in most texthooks on laser
theory [16.17.32.33]. The form of these equations depends somewhat on the model
used to describe the gain medium. We opt for the four level laser model for the

Ti:sapphire gain medium. as shown in Fig. (4.1). We assume that the upper pump
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Figure 4.1: A general model of the four level laser pumping scheme. The decay rates
from the upper pump band 73 and the lower lasing level v, are assumed to be much
greater than the decay rate of the upper lasing level 7. R, represents the rate at
which atoms are introduced into the upper lasing level.

band and the lower lasing level decays instantaneously compared to the fluorescence
lifetime. Assuming single mode laser operation. we arrive at the cavity rate equation.
which describes the time evolution of the number of photons ¢ inside the laser cavity

dq(t)

—— = An(t) [g(t) + 1] = cq(t) . (4-1)

Here K is the spontaneous emission rate per mode and v. is the cavity decay rate
which is related to the round trip cavity loss ¢. (in percent per pass) and the cavity

round trip time T by /
< = _—1 . 4.2
1007 ~ ¢ 2

Eq. (4.2) introduces 7. as the photon lifetime inside the cavity. The =17 inside the

e

square brackets in Eq. (4.1) is sometimes referred to as the “extra photon” and
represents the first photon inside the cavity mode due to the spontaneous emission
process. Without this spontaneously emitted photon, the cavity photons would not
“build up.” Therefore. this *1” is required when Eq. (1.1) is used to describe the
initial build up of laser action. At steady state, or other conditions where ¢ > 1, this

term can be ignored.




The atomic rate equation. which describes the number of atoms n in the u,per
state 1= given by
dn(t)
dt

where R, represents the rate at which atoms are introduce into the upper lasing level

=R, — va(t) — Kty . {1.3)

<

and v, is the upper lasing level decay rate. The lifetime of the upper state. 7,. is
related to its decay rate by

= Tz'l . (L
Since it i1s assumed that there is no accumulation of atoms in the lower lasing level.
Eq. (4.3) also describes the evolution of laser inversion or the population inversion.
The steady state solution of Eq. (4.1) and Eq. (4.3) gives us an expression for the

number of atoms in the upper state

-~

/e

88 &= I7 - 4.5
n i (+.5)
and the number of photons inside the cavity
R, T2
ss = — — = =(r—1)=. 1.6
q TR ( M {16)
Here we have introduced the laser pump parameter r by
R,K A
r=—t—. (+.7)
T2%c

The laser pump parameter can also be written as the ratio of the pump power to the

threshold pump power

W,
AT A 1.3
! T (1.3)
Note that at threshold. r = 1 and from Eq. (1.6) we can write
~ R
Ngp = — = —= . (4.9)
K G2

Comparing Eq. (4.9) with (1.5). we see that in the steadyv state, laser inversion is

“clamped” at its threshold value
Ngs = Ngp - (110

We use these rate equations to look at one specific dynamical behavior known as

relaxation oscillations exhibited by certain lasers.

13




4.2 Relaxation Oscillations: Laser Rate Equation Analysis

Many dynamic svstems operating in the steady state will return to their steady state
after being perturbed if the steadyv state is stable. The approach back to the steady
state may not be monotonic. Instead. the svstem may approach the steady state
in an oscillatory manner. These oscillations are usually damped and are known as
relaration oscillations. In this section. we analyze the rate equations of Section 4.1 in
the presence of perturbations from steady state and see under what conditions a laser
system exhibits relaxation oscillations. We will determine the equations of motion
for the relaxation oscillations in terms of characteristic laser parameters.

Since the laser rate equations (1.1) and (4.3) are coupled. a perturbation in either
the number of photons inside the cavity or the number of atoms in the upper state will
result in a perturbation of the other. Treating the perturbations as small compared

to the steady state values, we look for solutions to Egs. (4.1) and (4.3) of the form:

q(t) = q,5 + €(t) where €(t) € ¢ss . (1.11)
n{t) = nss + n(t) where n(t) < ng . (1.12)

Substituting Egs. (4.11) and (4.12) into Eqs. (4.1) and (4.3) and keeping only terms

linear in € and 7. we find the coupled rate equations for the perturbations to be

de(t
6d(t) = (r = 1)yn(t) (4.13)
dn(t
rl(t) ~vee(t) — rygn(t) (1.14)

If we take the time derivative of Eq. (4.13) and use Eq. (4.14) for 5. we obtain a
closed equation for €(t).

d?e(t) de(t)

dt? = —rv (1‘ —(r—=1)y27c€(t) . (4.15)

A similar equation is obtained for population perturbation. Equation (4.15) describes
the perturbation in the cavity photon number. By introducing parameters .3 and w,

as

2.3 = r+, and .‘,2 =(r—=1}m.. (4.16)

<
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we can rewrite the equation of motion for the perturbation of cavity photon number

as

d*e(t) de(t) 2 ,

2.3 o =0. T
(/'[2 + dl + L,((t) 0 (4]1)

This is the equation of motion for a damped harmonic oscillator with natural fre-

quency «, and energy decayv constant 2.3. The solution of this equation is of the
form

((f):coe"“’t. (4.1%)

Substituting Eq. (4.13) into Eq. (1.17) we get the auxiliary equation
SR —-wi=0. (1.19)

which determines w. Solving this equation for w we find

w=—idtyywi-3=-idtw,, (4.20)

where we have introduced a shifted frequency w, by

wy = Jw? — 3%, (4.21)

As is well known, dissipation shifts the frequency of oscillation [34].
The behavior of ¢(t) depends on the relative magnitude of w, and 3. We consider
three cases separately.
a.) For the case w? < 3?. & is pure imaginary and the solution from Eq. (4.13)
takes the form
€(t) = Ae~FFerdt L Bem(Iwelt (4.22)

Thus any perturbation from the steady state exponentially decays to zero. The system
is said to be orerdamped. In this case no oscillations in the laser photon number will
be observed. The condition «w? < 3% can also be expressed in terms of decay rates
of the laser system. By recalling the definitions of J and w, from Eq. (1.16). we find

that the condition for an overdamped response is

"2‘72

(r—1).< (4.23)




This implies that the cavity decayv rate must be less than or of the same order of
magnitude as the upper state atomic decay rate. This is characteristic of most gas
lasers. where relaxation oscillations are not observed.

b.) When «? = 32, the two roots to Eq. (4.19) are equal. For this case. the

solution from Eq. (4.13) takes the form
ety =€e (At + B) . (1.21)

and the system is said to be eritically damped. Any perturbation in the system decavs

to zero asymptotically with time. This condition exits in a laser system when

(r=1)1.= (4.25)

or the cavity decay rate and upper state decay rate are of the same order of magnitude.
c.) For the case w? > 3%, w, is real. Using Eq. (4.20). the solution from Eq. (4.18)

takes the form
e(t) = e (Ae""" + Be"“"’) . (1.26)

This solution can also be rewritten in the form
€(t) = ;e "cos(w it + o) . (1.27)

In this case. the system is said to be underdamped and displays an exponentially
damped sinusoidal response to the perturbation as it returns to steady state. In
terms of decay rates, we expect to see these relaxation oscillations in a laser system

where

o

Ye > Y2 - (4_)

)

This is the case for many solid state lasers. Expressed in terms of laser parameters

from Eq. (1.16) the oscillations around the steady state have a frequency given by

wr = J(r = Djave — r2a3/4 . (4.29)

The perturbation has an exponentially decaying envelop characterized by a decay rate
given by

=2 (1.30)

-~
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From Eqs. {1.29) and (1.30) we see that one can determine certain laser parameters
bv analvzing the relaxation oscillations. Indeed. this was one of the objectives of the
experiments discussed in Chapter 3.

Once we understand the characteristic equations of motion for a dynamic system
and their controlling parameters. we can now address the question of whether these
equations adequately describe the system dvnamics in general. This is the subject of

the next section.

4.3 Relaxation Oscillations: Numerical Modeling

One of the best ways to study a dynamic system is to model it and compare the
observed response with that predicted by the model. In this section. we describe a
method for modeling the relaxation oscillations exhibited by a laser.

Although the coupled laser rate equations of Section 4.1 are fairly simple in form.
exact analytical solutions to them are limited and complex in form [35]. Therefore.
in order to effectivelv model any type of laser dynamic these rate equations mmust
be solved numerically. The number of photons ¢ and the number of excited atoms
n are very large for realistic systems. These large numbers are difficult to manage
numerically. We therefore introduce scaled variables that are better suited for nu-
merical modeling. The scaling should be chosen in such a way as to minimize the
number of parameters in the equations of motion. Also, the scaling should allow the
equations to be solved with parameters measured from the experiment. We present
two different procedures for scaling. These are suitable for modeling different types
of perturbations.

For the system when gain is perturbed we scale the cavity photon number and

the number of excited atoms by introducing the variables

"

r = 2214 (1.31)
Q.s 72

y = Lo b (1.32)
n‘th 7(‘

Here g, represents the saturation photon number for the active atoms. It is defined

as the ratio of population decay rate 4, and the spontaneous emission decay rate per
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mode A by

(1.33)

oot
i
The scale factor for population ny, is the threshold population inversion defined by
Eq. (4.9). Equations (1.31) and (4.32) imply that & is the cavity photon number
in units of saturation photon number and y is the populaticu inversion in units of
threshold inversion. Using Eq. (4.7) we can express the population pumping rate in
terms of laser pump parameter r and various decay rates as
rY2%e

K

Substituting the scaled variables from Egs. (4.31). (4.32) and (4.34) into Eqs. (4.1)

and (4.3). the rate equations for the scaled variables are found to be

dr 1 .
(e D) .

dy e
o Y2 (r—y—yr). (4.36)

R, = (431)

fl

Finally. scaling time in terms of the cavity lifetime 7. by

t
T:‘-“/Ct: T—. (437)

we can rewrite Eqgs. (4.35) and (4.36) as

dr

_ _ Y 3R
7. = (y—DLz+ p (4.33)
dy
—_— = s(r—y-—. . 1.39
I (r—y—uxy) (1.39)

Here s is the ratio of the population decay rate v, and the cavity decay rate ~.
s§= —. (1.40)

These equations are appropriate for modeling a system where the gain of the laser
is modulated. Modulation of gain can be described in terms of the pump parameter

alone.
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For svstems where loss i1s modulated. both -, and r are changing. so a different
scaling is more appropriate. For dvnamical studies with this type of syvstem. we
replace y defined in Eq. (4.32) with the variable

Kn

= —. (4.4
2

-

In this model we scale both the number of atoms in the upper state and the number
of photons in the cavity by the saturation photon number defined by Eq. {1.33). We

scale the time in terms of the upper state lifetime by

t ‘
T =yt =—. (4.42)
T2

Using Eqgs. (4.31). (4.41) and (4.42) into Eqgs. (4.1) and (4.3) we obtain the new rate

equations
dr_ | ! 143
I —.,.r+q’ pr 4.+
d:
— = R—={r+1). (11l
dr

where we have introduced a new parameter p by

p=, (1.15)
T2
The normalized pumping rate
R, K
R: P2 =rp (116)
72

then depends only on the pumping rate R, and stays constant as long as R, is
constant. The only parameter that changes when the cavity loss is riodulated is p.
detined in Eq. (4.43). It is helpful to solve Eqs. (4.43) and (4.44) for the steadyv state.

For the scaled cavity photon number at steady state we find

Is,=£—1=r—l. (1.47)
p

For the scaled population inversion we find (neglecting the 1/q, term)

ey =P - {4.4%)
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We will ind these steady state values useful in Section 5.2.4 when we use Eqs. (1.43)
and ¢ L.44) to model our experimental observations.

Using Eqgs. (4.33) and (4.39). or Egs. (4.43) and (1.44). one could model a svstem
numerically depending on whether the gain or the loss is modulated. These equations
are scaled in such a manner that only a single parameter is needed to describe the
modulation of the system. For Egs. (1.38) and (4.39). r is varied to represent gain
modulation. For Egs. (1.13) and (4.44). p is varied to represent loss modulation.
From their definitions in Eqgs. (1.8) and (4.13). these parameters can be measured

experimentally.

4.4 A Method for Determining Intrinsic Cavity Loss

The threshold for a laser system is defined to be the operating point at which the
round trip gain is equal to round trip loss. In other words, the rate at which the
signal grows inside the cavity is balanced by its decay rate out of the cavity. In this
section we derive an equation that represents the threshold condition and describe an
experimental method to determine the intrinsic losses of a laser system.

Let o represent the gain coefficient (fractional gain per watt per second) of the
laser and W}, be the pumping power at threshold. Then the threshold condition can
be written as

ve=aWy . (4.49)

where the cavity decay rate v. is defined in Eq. (4.2). If we let the total cavity decay
rate v, be represented by the sum of the decay rate due to intrinsic losses of the
laser ~,,; and an induced decay rate 303 due to a variable loss element such as an

acousto-optic modulator {AOM). then we can write
Y: = Tint + Ya0M - (4.50)
The threshold condition then becomes

Yint + Ya0ar =ty . (1.51)




If the losses are small. we can express Eq. (1.31) in terms of percent loss. Using
Eq. (£.2) we write

(-=F 0+ a0y =gl {£.52)

Here g represents the gain of the laser in percent gain per pass per watt of pnmping
power. In terms of the fractional gain coefficient @ and the cavity round trip time T
we express g as

g =100Ta . (1.33)

Since the intrinsic cavity loss €, 1s a constant of the laser. we rewrite Eq. (1.32) with

f 1orr as a dependent variable
faom = gWih — i (1.54)

This is an equation representing a straight line of slope ¢ and intercept —/,,,. From
Eq. (4.54). one can determine the intrinsic cavity loss by measuring the threshold
pump power Wy, required at different levels of induced loss € 401s. Indeed this was
the objective of the second set of experiments described in Chapter 3.

From this same experimenta method. we can also determine other parameters of
our laser system. Recalling the definitions of the laser pump parameter r in Eq. (1.8)
and the normalized pumping rate R in Eq. (4.46), we can write

W
R = 130_721: . (1.53)
where we have also used Egs. (4.49) and (4.33). Therefore. once we know ¢ from
the slope of Eq. (4.54). we can determine the normalized pumping rate R. which is
another constant of the svstem. for a given pump power W,. We apply this method
to determine R for our laser system in Chapter 5.

Finally, we can approximate the stimulated emission cross section 7, of the laser
gain medium. Near threshold. the gain coefficient is known as the small siynal gain
coefficient. In terms of percent gain per watt per pass. the small signal gain coefficient

g can be written
_ 100non 1 n2n3021 72

1.56
Ahv, (1.56]




The n terms represent efficiencies of transferring energy from the pump laser to the
laser transition. The quantum efficiency 5y represents the fraction of absorbed pho-
tons into the pump band that actually participate in the laser transition. The energy
efficiency term 1, represents the ratio of the energy of a laser photon to that of a
pump photon

r];:ﬂl-:/\—p. {1L3T)

hv, A v

Here the subscript p refers to the pump and ! refers to the laser. The fraction of the
actual pump beam that is incident on the laser gain medium is represented by 7,.
which accounts for reflection losses. scattering. etc. The fraction of the incident light
actually absorbed by the gain medium is given by n3. The upper state lifetime 7,
is defined in Eq. (4.4) and A is the cross sectional area of the pump beam passing
through the gain medium. Finally. hv, represents the energy of a pump photon.

Solving Eq. (4.36) for o3; we find

gAhv,

on {1.38)

- 100n0m1 921372 )

All terms except ng in Eq. (4.58) can be determined experimentally. with a little extra
work. from the method for determining cavity losses outlined in this section. We will
use Eq. (4.58) in Chapter 5 to approximate the stimulated emission cross section o,
for our Ti:sapphire crystal.

In this chapter we saw how Egs. (4.1) and (4.3) can be used to analyze the relax-
ation oscillations of lasers. We also developed a method for modeling this dynamical
hehavior in lasers. We concluded the chapter with a brief look at the threshold con-
dition and saw how the intrinsic cavity loss. the normalized pumping rate. and the
stimmulated emission cross section can be determined with experimental measurements
at threshold. In the next chapter. we describe the experiments conducted with our

Ti:sapphire laser.
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Chapter 5

Experimental Results

In the Ti:sapphire laser. population inversion evolves on a time scale comparable
to the cavity lifetime. Such lasers are known as class-B lasers. Most solid state
lasers fall into this category. When perturbed. this class of lasers exhibits a wide
variety of dynamical behavior. These include simple relaxation oscillations. spiking
oscillations. and chaotic behavior. The type of dynamical behavior observed depends
on the frequency and depth of perturbations from the steady state.

This chapter begins with a description of the laser system used to conduct the
experiments. We then describe the data acquisition procedure. results. and analysis
of two sets of experiments. The first set involved the measurement of the relaxation
oscillations and spiking behavior exhibited by the Ti:sapphire laser. The second set
involves experiments that allow us to determine the intrinsic loss of the cavity by an
independent method. From the analysis of these experiments, we were able to derive
useful information such as the upper lasing level decay rate. cavity losses and gain
per pass for our laser system. Although the results presented here are specific to the
Ti:sapphire laser we designed and constructed. similar procedures and conclusions
could be applied to other laser systems as well. Information from these experiments

would be useful in other experiments on the dynamics of class-B lasers.

5.1 Laser Description

The laser system used for the experiments described in this chapter was designed
according to the methods developed in (Chapter 3. A diagram of the laser is shown
in Fig. 5.1. The laser cavity consists of two curved mirrors, each with radius of

curvature R = 10 cm and two flat mirrors for steering the long arm. All four mirrors
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Figure 5.1: Laser cavity design used for the experiments in Chapter 5.

were coated for high reflectivity in the wavelength range 650 to 900 nm and high
transmittivity {(>85%) for the argon ion pumping lines of 438 and 511.5 nm. The
coating was optimized for incident angles of 20° for p-polarization. The mirror mounts
were constructed of anodized aluminum and had three contact points for adjustment.
This mount design afforded precise translational and sensitive tilt adjustments with
80-pitch adjusting screws. The mirror mounts were secured to a 2-inch stainless steel
optical breadboard mounted on a four pedestal floating optics table.

The 2 c¢m long Ti:sapphire rod was cut with Brewster windows at both ends and
had a diameter of 4 mm. The rod was housed in a water-cooled copper jacket mounted
on a tilt/rotation stage. This stage allowed for rotational adjustment about all axes
of the crystal. The crystal was wrapped with thin flexible copper foil to ensure good
thermal contact with the cooling jacket.

The dimensions of the cavity were determined by usiug the stability requirements
discussed in Section 3.2. The size of the laser was to be large enough to accommodate
various intracavity elements and still fit the confines of the I’ x 2’ breadboard. The
actual length of the long arm was approximately 107 cm and the value selected from
the stability diagrams for & was about 1.5 cm (see Figs. 3.2 and 3.3). This gave a
total distance of 11.5 cm between the two curved mirrors along the cavity axis and
4.75 em between the faces of the crystal and the curved mirrors. The physical round
trip length of the cavity was 118 em. The angle of incidence at the curved mirrors
was 13.57. selected to give maximum astigmatic compensation in the long arm of the

laser. as detailed in Section 3.3.




Tue pump beam was mode matched to the fundamental cavity mode with a
10 ¢m achromatic lens positioned 7.9 cm behind one of the curved cavity mirrors.
as described in Section 3.4. The theoretical position of 7.3 cm from Eq. (3.63) was
initially used. then the lens was translated to optimize output. The mount for the lens
afforded two dimensions of translational freedom as well as tilt around the vertical
and lateral axes. The polarization of the pump beam was rotated with a half wave
plate (polarization rotator) anti-reflection coated for the pump wavelengths. The
vertical polarization was rotated 90” into the tangential plane for minimal loss at the
Brewster window of the crystal.

A Brewster's angle Faraday rotator and compensating waveplate were placed in
the long arm of the cavity to obtain unidirectional lasing. The combination was
placed inside the cavity to permit clockwise propagation of the laser heam in the long
arm, as shown in Fig. 5.1. A three-plate birefringent filter, inserted at Brewster’s
angle was used to obtain single wavelength performance. Single mode operation was
obtained by introducing a 3 mm thick etalon into the cavity. The etalon has about
30 % reflectivity centered at 780 nm for normal incidence. The entire laser svstem
was enclosed in a plexiglass dust cover to improve stability. The pump beam was
steered through a plexiglass tube to minimize fluctuations due to air currents and
dust particles over the 2 meters of propagation to the Ti:sapphire laser. The laser
operated stably in a single longitudinal mode. This was checked with the help of a
scanning spectrum analyzer. Experiments were conducted with this laser as described

in the following sections of this chapter.

5.2 Experiment 1: Relaxation Oscillations

There were two objectives in the first set of experiments. The first objective was
to determine the fluorescence lifetime, 7, of the upper lasing level and the intrinsic
cavity losses. . (percent loss per round trip). of our Ti:sapphire laser. Both of these
quantities were determined by analyzing the results of the experiments in terms of
the linearized rate equation model introduced in Chapter 4.

The second objective was to see how well the full rate equations predicted the
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observed behavior of the laser. The theoretical model assumed a four level laser and
ignored all sources of noise, fundamental as well as deterministic. It assumed that
polarization dynamics are fast compared to the population and field dyvnamics and
that the lower level decays almost instantaneously to the lower pumping level.

The experimental method involved switching the cavity Q. or modulating the laser
cavity loss. The output waveforms from the laser were digitized and recorded as a
function of time. A series of measurements were made of the relaxation oscillations
at different pump parameters. From this series, one particular waveform was selected
at random to extract characteristic laser parameters. Once known. these parameters
were used to predict the relaxation oscillation behavior of the laser at other pump

parameters.

5.2.1 Experimental Procedure

In order to perturb the laser. an acousto-optic modulator (AOM) was placed in the
long arm of the laser, as shown in Fig. 5.2. The AOM was manufactured by IntraAc-
tion Corporation. It consists of a quarti crystal. anti-reflection coated for minimal
static insertion loss in the 700 to 900 nm wavelength range. sandwiched between
two piezoelectric transducers. The transducers set up acoustic waves in the crystal
causing spatially periodic changes in the index of refraction. These periodic changes
give rise to a refractive index grating in the path of the beam. This grating causes
a certain fraction of the beam to be diffracted out of the beam path and acts as a
source of intracavity loss. The loss suffered by the beam passing through the AQM
depends on the angle of incidence of the beam and the amplitude of the acoustic wave.
An 30 MHz acoustic wave was set up by the driver (IntraAction Corporation Model
ME-%0B). The driver produces an 30 MHz signal whose amplitude is proportional to
the input voltage in the range 0 to 1 volt. The depth and frequency of modulation
{duration of acoustic power on) was controlled by pulses from a Krohn-Hite Model
2000 signal generator to the driver.

After the AOM was put inside the cavity, all elements were adjusted to minimize
the threshold of laser action. Laser threshold was found to be at 4.73 watts from the

argon ion pump laser when no signal was applied to the AOM. The cavity was then
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Figure 5.2: Experimental setup to conduct relaxation oscillation experiments de-
scribed in Section 5.2. The laser beam is represented by the light dashed line and the
pump beam by the heavy dashed line. The solid line represents electrical conn-ctions.
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Figure 3.3: A timing diagram comparing the outputs of the signal generator. the
AOM driver, and the laser for shallow cavity loss modulation. The cavity experienced
greater loss during the time period that the acoustic wave was on.

ot
-1




loss modulated. Both the frequency and depth of loss modulation could be controlled.
Cavity losses are related to cavity ) by
2r L

Q:T (5.1

where L is the round trip length. A is the lasing wavelength. and (. is the percent
power loss per round trip. It follows that since the AOM modulates the internal loss.
it modulates the cavity Q.

Output from the laser was detected by a variable gain. high bandwidth. fast
photodetector using the light output from one of the flat cavity mirrors. To keep the
threshold pump power as low as possible, no output coupler was used. This setup also
allowed us to determine just the intrinsic cavity loss. without having to compensate
of output losses. The signal from the photodetector was monitored with a Tektronics
2465A 350 MHz oscilloscope and digitized with a LeCroy TR8837F transient recorder.
The transient digitizer was housed in a CAMAC crate controlled by a LeCrov 8901 A
GPIB crate controller. Both the transient digitizer and the AOM driver were triggered
from the same source. At the end of each measurement, the recorded waveforms were
transferred to an IBM PC/AT for further analysis. A full schematic of the experiment
is shown in Fig. 53.2. A timing diagram comparing the output of the signal generator.
the AOM driver. and the laser as a function of time is shown in Fig. 3.3. Data were
taken and evaluated for two independent experiments to determine the parameters

that govern the rate equations of Section 4.1.

5.2.2 Results

For the transient dynamics experiments. the cavity () was modulated at two different
depths. Deep modulation resulted in the laser being completely off during the pe-
riod of modulation. This means that the cavity loss and AOM induced loss exceeded
round trip gain. Shallow modulation resulted in the laser operating continuously. but
jumping between different “cavities.” one with a high Q and the other with a lower
Q. For the sake of distinguishing the response of the laser to the loss modulation in

these two cases. we refer to the transient oscillations in the case of deep modulation
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as spekeng oscillations and those in the case of shallow modulation as relaration oscil-
lations. The vutput waveforms were recorded for different pump parameters. At each
operating point. we recorded waveforms from a single sweep and from an average of
ten sweeps.

One particular waveform averaged over ten sweeps. chosen at random. was ana-
lyzed to determine all the characteristic parameters describing the relaxation oscilla-
tion equations of Section 4.2. The procedure for determining r; and the corresponding
uncertainty is as follows. From Eq. (1.27). we see that the envelop of transient os-
cillation 1s a pure exponential with a decay rate J. This exponential decay rate is
related to the upper state decay rate 43 via Eq. (4.30). Therefore. knowing the pump
parameter r and measuring J allows us to determine +;. The upper state lifetime is

related to the upper state decay rate by the expression

_ .1
Ty = 7

1

—
it
O

—

To measure 3. we let u(t) represent the peak amplitudes of the oscillations from
the steady state. These peaks form an exponentially decaying curve according to the

expression

p(t) = poe™ . (32.3)

Here u, represents the amplitude of the initial perturbation and 7 is the decay rate.
The positions of the peaks of the oscillation versus elapsed time were fit to an expo-
nential decay curve to determine 3 in Eq. (3.3). This measured value of .3 was then
used along with the pump parameter of the waveform being analyzed to determine the
upper state decay rate according to Eq. (4.30). We then determine 1, using Eq. (3.2).

The uncertainty in 7, was estimated from the uncertainty in 3. Since the peaks
of the recorded waveform correspond to a specific number of counts. .V. we assume
a Poissonian distribution for the counts and take the statistical uncertainty in the
peaks to be

N
e = VY (5.4)
A

Va

The steady state value of the waveform was determined by taking the time average

of the la~ e half of the waveform. where the laser had reached steady state. The
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uncertainty in the steady state value was also estimated. The statistical uncertainty
In time separation between successive peaks was simply the root mean squared of
the deviations of the time period between peaks. If we take the natural logarithm
of Eq. (5.3). we can express 3 in terms of the amplitudes of the peaks and the time

periods. T,
_Inp,—Inp

3 T (3.3)
Using the laws of error propagation [36]. we can approximate the uncertainty. A.3. in
3 to be
A\t (Ap\ (AT .
A3 J(#T) +(ltoT + T (5.6)

Here Ap represents the averaged uncertainty of the peaks of the waveform. Ay, rep-
resents the uncertainty in the steady state value of the waveform. and AT represents
the uncertainty in the time separation between peaks.

Using r = 1.39 for the pump parameter of the waveform being analyzed and the

measured value of J in P
)

9 = —, ’ (-—)
72 - ).
we find the value for the vpper state decay rate to be
v, = 288 + 10 KHz . (5.3)
The upper state lifetime 7, is then given by

[72 = 3.47 £ .13psec]|. (5.9)

To find f.. the intrinsic cavity loss. we first determine the relaxation oscillation

frequency w,. from the measured waveform using the average time period between

successive peaks T,,.
2x .
wr = . ()10]
TQ['E

From the measured value of w,. we are able to determine the cavity loss rate, ~.. by

using Eq. (4.16) into (4.29) to obtain

».«,‘2 w‘3+ -12 N
. = < = . ()11'
Talr = 1) 20 = 1)
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The uncertainty in the oscillation frequency was determined from the uncertainty in

the time periods according to

Ae, AT (5.12)
- ST 3.12
The uncertainty in <, is determined from the relation
Ax. Aw\? | (An)
SEE 4( ) +< ”) : (5.13)
Ic *o J2
where R A3
=22 (3.14)
Y2 3

Using the measured values for J. «,. % and r in Eq. (3.11), 5. is found to be
. = 9.13 £ .05 MHz . (5.13)

Using Eq. (5.15) into Eq. (4.2) we obtain a cavity loss of

f. = (3.6 £ .2) % per pass (3.16)

for our 118 cm cavity. This figure includes the static insertion loss of the AOM which.
according to the specifications. carries a loss of about 0.25 %.

Once the values for the upper state decay rate 4, and the cavity decay rate 4. are
determined, a relaxation oscillation frequency can be predicted for all pump parame-
ters and compared with the relaxation oscillation frequency measured experimentally
from the recorded waveforms. Figure 5.4 shows the results of such a comparison
for deep modulation. All experimental data for «, were extracted from single sweep
records. Figure 5.6 shows the same comparison except that the experimental data
were extracted from waveforms averaged over ten sweeps. Error bars for the single
sweep results represent the root mean squared deviations in the period of oscillation.
The error bars for the ten sweep results represent the largest variation between the
single sweep measurement and the ten sweep measurement for a given pump parame-
ter. For completeness, a plot of the output power of the laser. measured by the same
detector used for detecting the waveform signal. as a function of pump parameter
is shown in Fig. 5.5. Figures 5.7-5.9 show the same comparison as Figs. 5.4-3.6 for

shallow modulation of the cavity.
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Figure 5.1: Variation of oscillation frequency «, with pump parameter r. t.xperimen-
tal points are from single sweep waveforms recorded with deep cavity loss modulation.
The continuous line represents the theoretical curve from Eq. (4.29). Parameters ~.
and 4, were extracted from a single waveform averaged over ten sweeps at the pump

parameter r = 1.39.
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Figure 5.5: Variation of laser output power versus pump parameter r for deep mod-
ulation. The line represents theoretical output characteristics.
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Lhis experiment was repeated to explore the role of noise. intrinsic or extrinsic. in
the experiment. The same experimental procedure was used. with the exception that
only single sweep waveforms were recorded. All parameters were then extracted from
a single waveform as opposed to a waveform averaged over ten sweeps. The result for

the upper state lifetime was

sz =348 % .18;150(‘]. (:

ot
—
-1
—

and the cavity loss was determined to be

(.= (3.6 +£.1) % per pass| (3.1

The plots in Figs. 5.10 through 5.13 show the observed and predicted spiking and
relaxation oscillation frequency and the corresponding output power as a function of
pump parameter. No error bars are shown in Fig. 5.12 since in many cases there were
only two peaks on the waveform. This single data point did not allow an estimate of

error in the period or frequency of oscillation.

5.2.3 Discussion of Results

The close agreement between the two data collection runs for the values for the up-
per state lifetime 7. and the intrinsic cavity loss £.. suggests that noise did not
significantly effect the experimental measurement of these quantities. except per-
haps at lower operating points. The value for the upper state lifetime can be com-
pared with other measurements whose primary objective was to measure this value
preciselv. Spectroscopic and lasing characteristics of Ti:sapphire have been of con-
siderable interest ever since its potential as a broadly tunable solid state laser was
recognized [1. 37, 38]. Experiments to determine the fluorescence lifetime of the Ti**
ior. in Al;03 have been carried out by monitoring the fluorescence decay after exciting
a crystal with a pulse of radiation from a dye laser at various wavelengths [1. 39. 40].
The results of various experiments are consistent and show a temperature-dependent
upper state lifetime. The lifetime has a maximum value of approximately 3.83 psec
below 200 K. It then decreases rapidly in the temperature range of 200 to 400 K to

a value less than 1 usec.




1.50 T T T T T T T T T Y T T T T

N
(64}
v
1

0.50 n L . i 4 N Il - i L I L " 1 . I "
10 11 12 13 14 15 16 1.7 18 19 20

PUMP PARAMETER r
Figure 5.10: Variation of oscillation frequency w, with pump parameter r. kxper:-
mental points are from single sweep waveforms recorded with deep cavity loss mod-
ulation. The continuous line represents the theoretical curve from Eq. (4.29). The
data point with the cross indicates the waveform used to extract parameters ~. and

~2 for Figs. 5.10 and 5.12.

10-0 1 1 T T L T T 1 T Y H T T T T T
~~ B
(7] ]
=
c 7.5F i
3 L | a
£ J
| -

o
~ 5.0} .
-
2
a s
5

25t 4
o

0.0 " L A i i i " 4 L 1 . ! " i

10 14 12 1.3 1.4 15 1.6 17 18 1.3 20
PUMP PARAMETER r

Fignre 5.11: Variation of laser output power as a function of pump parameter r for
deep modhlation in the second experiment. The line represents theoretical output

characteristics.




1.50

1.25

(MHz)

1.00

Wr

0.75 |

i

It

e s | i 1 Il 1 Il A .

0.50
*.0

1.1

1.2 1.3 14 15 16 1.7 18 19 20

PUMP PARAMETER r

Figure 5.12: Variation of oscillation frequency . with pump parameter r for shallow
cavity loss modulation. Experimental points are from single sweep wavetorms. The
continuous line represents theoretical predictions based on Eq. (1.29). Parameters ~.
and <, were extracted from a single sweep waveform for pump parameter r = 1 33,
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[n vur experiments. the crystal was cooled by circulating water in a jacket sur-
ronnding the crystal. Good thermal contact between the jacket and the crystal was
achieved by wrapping the crystal with thin. flexible. copper foil. This cooling kept
the crystal at a temperature of approximately 280 K. Extracting a value for the upper
state lifetime from the published results [1. 39. 40] for this temperature gives a lifetime
of 3.20 to 3.35 psec. Our results are consistent with this value. within experimental
error. This agreement gives support to our experimental method for determining the
upper state lifetime 7, by analyzing the relaxation oscillations. Further. this agree-
ment suggests that the assumptions made in deriving the equations governing the
relaxation oscillations in Section 4.2 were indeed valid.

The value of the intrinsic cavity loss . is unique to our laser system. Therefore it
can only be compared with a measurement of the cavity loss by a method independent
of the relaxation oscillations. This measurement was the primary objective of the
second set of experiments. the results of which are described in Section 3.3.

To see how well the rate equation model is able to predict the observed behavior of
the laser. we compare the experimental results with the theoretical predictions based
on Eq. (4.29) in Figs. 5.4. 5.6. 3.7, 3.9. 5.10. and 5.12. Such a comparison shows that
the general behavior of the relaxation oscillation frequency foliows the thecretical
prediction at low pump parameters (r < 1.3). At higher pump parameters however.
noticeable deviations from the predicted behavior appear. This same behavior is
observed in the output power of the laser. as shown in Figs. 3.5. 5.8. 5.11. and 5.13.
The output power should increase linearly with increased pump power. as depicted
by the continuous line in these figures. This deviation of laser output from a linear
dependence on the pump parameter has been observed in other experiments {22,
11}]. This departure from the expected output power is probably due to temperature
changes inside the mode volume of the crystal at higher pump powers. As previously
noted. the upper state lifetime r, is temperature dependent. with a steep slope in
the room temperature operating regime. This means that a small change in the
temperature inside the crystal can result in a significant change in the upper state
lifetime. Recalling the small gain coefficient given in Eq. (4.56). we see that the gain

of the laser has a linear dependence on the upper state lifetime. A shorter upper
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state lifetime reduces the gain per pass inside the laser and hence would decrease the
output. This would have the same effect as lowering the pump parameter r. since the
threshold for lower gain requires greater pumping.

The effect that a change in the upper state lifetime would have on the relaxation
oscillation frequency can be determined by analvzing Eq. (4.29). The dominant fre-
quency is «,. found in the first term of the square root and defined in Eq. (1.16).
Since r decreases with a decreasing upper state lifetime. we would anticinate that the
relaxation oscillation frequency would decrease as the temperature insi  the cryvstal
goes up. This is what is seen in Figs. 5.4. 3.6, 5.7, 5.9. 5.10, and 5.12. At lower pump
parameters. in the range of r = 1.0 to 1.5, the observed relaxation oscillation fre-
quency agrees with the predictions of Eq. (1.29) derived in Section 4.2. This suggests
that the simple laser rate equations (4.1) and (4.3) describe the dynamics of the laser

system well for lower pump parameters. where thermal effects can be ignored.

5.2.4 Results of Numerical Modeling

We also analvzed the data obtained from our experiments in terms of a model that
describes the dynamics of the system. This comparison between theory and experi-
ment is more detailed than that based solely on Eq. (4.29) and provides a much more
stringent check of the validity of the simple rate equation model. In Section +4.3. a
method for modeling the laser rate equations (4.1) and (4.3) of Section 4.1 was pre-
sented. For a loss modulated system, the appropriate equations of motion were given
by Egs. (4.43) and (4.44). These equations were solved numerically with experimen-
tally measured parameters using the Runge-Kutta method of algorithms. Computer-
generated waveforms were then produced based on these solutions for comparison
with the recorded waveforms. Using this technique. we modeled several waveforms
selected at random. The method in which the computerized model “laser” was used
to generated the various waveforms is as follows.

For deep modulation. the model equations were solved starting at ¢t = 0 with the
number of atoms in the upper lasing state at the scaled stationary state value of p

as defined in Eq. (1.18). Using the results from our first experiment for ~, {3.8) and
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5. (3.15) into Eq. (1.13). the equation for the modulating parameter. we find
p=2x319. (5.19)
12
The normalized pumping rate R was set as defined by Eq. (4.46) using the pump
parameter of the waveform being modeled and the value of p given in Eq. (3.19). We
started with the laser ~off " initially. For this. the value for the number of photons
in the cavity was first estimated to be 107!°. based on the value of the saturation
photon number ¢, defined in Eq. (1.33). The actual number of photons in the cavity
mode is indeterminant because of spontaneous emission noise. The initial number of
photons was adjusted to get the model laser to initiate buildup at approximately the
same time as the recorded waveform. With the parameters initialized as described.
the waveform generated by the model represents the turn on of a laser recovering
from deep modulation.

Comparisons of the measured and model-generated waveforms for deep cavity
loss modulation are shown in Figs. 5.14-5.17. The model-generated waveforms are
represented by the continuous curve and the measured waveform by the dotted curve.
Figure 5.14 compares a single sweep waveform at pump parameter r = 1.29 with the
model predictions and Fig. 5.15 compares a waveform averaged over ten sweeps with
the model predictions at the same pump parameter. Figure 3.16 compares a single
sweep waveform at pump parameter r = 1.39 with the model predictions and Fig. 5.17
compares a waveform averaged over ten sweeps at the same pump parameter.

For shallow modulation, the initial values for the model laser were chosen in
the same manner as for deep modulation. except that the cavity photon number
was set to its stationary state value (r — 1). as defined by Eq. (4.47). The loss
parameter p was then modulated at a frequency corresponding to the modulating
frequency of the AOM in the actual experiment. The model was allowed to "run” long
enough to eliminate transient effects of the initial conditions. Since the exact depth
of cavity loss modulation was not known for the relaxation oscillation experiments,
the depth of modulation for p was determined by varying the fractional change in p
until the steady state values of the recorded and modeled waveforms overlapped. The

actual depth of modulation for the cavity loss was then estimated from this fractional
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Figure 3.14: A comparison of recorded and modeled waveforms representing the =pik-
ing oscillations of the Ti:sapphire laser with deep loss modulation. The solid curve
depicts the modeled waveform generated by the model described in Section 1.3. The
dotted curve represents the single sweep waveform recorded at r = 1.29.
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Figure 5.15: A comparison of recorded and modeled waveforms representing the
spiking oscillations from deep loss modulation. The solid curve depicts the model-
generated waveform and the detted curve represents the recorded waveform averaged

over ten sweeps at r = 1.29.
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Fignre 5.16: A comparison of recorded and modeled waveforms representing the <pik-
ing oscillations from deep loss modulation at pump parameter r = 1.39. The solid

curve depicts the waveform generated by the model and the dotted curve represents
the recorded single sweep waveform.
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change in p. With the parameters for the model determined as described here. the
generated waveforms represent a laser system being disturbed with shallow cavity
loss modulation.

Figures 5.13-3.21 show the comparison between the model predictions and the
measured waveforms for shallow cavity loss modulation. The model generated wave-
forms were adjusted on time scale to compensate for the trigger delay in the recorded
waveforms. The depth of loss modulation for all modeled waveforms was about 0.3 4.
Figure 5.13 shows a comparison of a single sweep waveform recorded at pump param-
eter r = 1.23 with the model prediction. A waveform averaged cver ten svieeps at
the same pump parameter compared with the model prediction is shown i Fig. 3.19.
Figures 3.20 and 3.21 compare the waveforms recorded at another pump parameter
of value r = 1.50 for a single sweep and averaged over ten sweeps with the vespective
model predictions.

By comparing the recorded waveforms with the model-generated waveforms we
conclude that the model describes the qualitative behavior of the laser from loss
modulation weil. Quantitative comparisons between the model and the actual laser
behavior are limited by a number of factors. First is the fact that the recording of
the actual laser behavior by the transient digitizer is limited by the speed of the
digitizer. A comparison between the signal rise time on the oscilloscope and the
rise time displayved on the recorded waveform indicated tha' the bandwidth of the
transient recorder was less than that of the detector. Second. since the model uses
experimentally measured parameters. uncertainty in the measured values will result
in uncertainty in the modeled waveforms.

We can also derive conclusions based on the differences between the single sweep
waveforms and those averaged over ten sweeps. For the deep modulation wavetorms.
the averaged waveforms consistently have shallower initial peaks or “spikes™ than
the waveforms recorded from single sweeps. Fer shallow modulation thi< difference
is not as pronounced. Slight fluctuations in the time to reach this first peak would
result in an overall decrease in the amplitude of the spike as it is averaged. This
suggests that the rise time to the first peak fluctuates more from a cavity with deep

loss modulation than for a cavity with shallow loss modulation. The source of this
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Figure 5.18: A comparison of recorded and modeled waveforms representing the re-
laxation oscillations of the Ti:sapphire laser with shallow loss modulation. The solid
curve depicts the modeled waveform generated by the model described in Section 1.3.
The dotted curve represents the single sweep waveform recorded at r = 1.23. Depth

of loss modulation for the model was 0.3 %.
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Fignre 5.19: A comparison of recorded and modeled wavetorms representing the re-
laxation oscillations from shallow loss modulation. The solid curve depicts the model-
generated waveform and the dotted curve represents the recorded waveform averaged

over ten sweeps at r = |.28.
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Figure 5.20: A comparison of recorded and modeled waveforms representing the re-
laxation oscillations from shallow loss modulation at pump parameter r = 1.50. The
solid curve depicts the waveform generated by the model and the dotted curve rep-
resents the recorded single sweep waveform. Depth of loss modulation was 0.3 ‘4.
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Fignre 5.21: A comparison of recorded and modeled waveforms representing the re-
laxation oscillations from shallow loss modulation. The solid curve depicts the model-
generated waveform. The dotted curve represents the recorded waveform averaged
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slight remporal Huctuation for the deep modulated cavity is quantum noise since the
laser is off during the time the cavity suffers large loss. The buildup time to the
first peak is dependent upon the number of photons inside the fundamental mode of
the cavity. The buildup of the laser radiation starts once a population inversion has
developed and a spontaneously emitted photon passes through the gain medium. The
average time for laser buildup decreases as the number of photons present initially in
the cavity increases. The study of this quantum noise and its deterministic effect on

the rise time of a laser signal offers an excellent opportunity for further research.

5.3 Experiment 2: Cavity Losses

In Section 3.2. we described an experiment to measure the intrinsic loss of a laser
system by studving its relaxation oscillations. In this section. we describe another
experiment that was carried out to determine the intrinsic cavity losses. This method
also allows us to determine the normalized pumping rate R of our laser as defined by
Eq. (1.16) and estimate the stimulated emission cross section 7;; of the Ti:sapphire
crystal. The theoretical background for this experiment is given in Section .1 To
carry out this experiment. the loss offered by the acousto-optic modulator used in the
experiment was calibrated. The experimental procedure consisted of measuring the

threshold pump power as a function of the AOM loss.

5.3.1 Experimental Setup: AOM Calibration

Our objective in calibrating the AOM loss was to determine the percent loss out of
the primary beam as a function of input voltage to the driver of the AOM. The AOM
was placed at normal incidence immediately outside the Ti:sapphire laser cavity. The
laser was then operated at a certain pump power above threshold. The light output
from one of the cavity mirrors was allowed to pass through the AOM. The zero order
bheam in the transmitted light illuminated a photodetector. The detector was placed
far enough awayv from the AOM to ensure sufficient separation between the zero and
higher order diffracted heams so that they would not be detected. The signal from

the photodetector was displayved on an oscilloscope and digitized and recorded by the
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tran~ient digitizer. The source of DC voltage to the AOM driver was a Power Designs.,
(e Model 603500 DC power supply. The carrier level (biasy on the driver was et 10
zero. The DO voltage to the driver was incremented in steps of 100 m\V in the range
from 0 to 1 V. Waveforms were recorded at cach level of DC inpnt 1o the driver,
To minimize the effect of fluctuations in the pump and the Tisapphire laser. the
waveforms were averaged over 100 sweeps. The recorded waveforms were then further
time averaged over the 2 ms duration of the sweep to determine an average value for
the light intensity. Any contribution from the detector offset was subtracted from
the measured mean signal producing a number V.. where r represents the applied
voltage to the driver and .V represents the average intensity of the transmitted bhean.
Percent loss for the applied voltage was determined according to the relation

% loss induced by AOM = \O—\—\—l- x 100 . i3.20)

Yo

The data points showing 7% loss as a function of DC volts applied to the driver are
shown in Fig. 5.22. The straight line is the best fit to the data points. The slope
of this line gives the relationship between loss induced out of the primary beam and

voltage applied to the AOM driver. This relationship was determined to be
loss = 0.0121% /mV . (5.21)

The uncertainty in this value is less than 0.15% of the measured value.

5.3.2 Experimental Setup: Cavity Losses

Once the AOM was calibrated. it was placed at normal incidence in the long arm of
the cavity. All intracavity elements were adjusted to minimize the threshold. which
was determined to be at £.75 watts of pump power. Outpnt from the laser was
monitored by a high gain detector from reflections off one of the Brewster windows
of the ervstal as shown in Fig. 5.23. Thix light was filtered with a colored glass
filter and focused onto the detector. The signal from the detector was monitored
with an oscilloscope. The threshold condition was defined as the point at which the

Huctnations in the signal were equal to the average of the signal. The intensity of the
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Figure 5.22: Loss calibration curve for the IntraAction Corp. acousto-optic moduiator
used in the relaxation oscillation and the cavity loss experiments. Data were taken
at normal incidence using output from the Tiisapphire laser.

pump power was measured using a photodetector monitoring the reflections of pump
light from the cavity curved mirror. as shown in Fig. 5.23. The reflected light was
attenuated through a series of neutral density filters.

\oltage applied to the AOM driver was incremented in steps of approximately
30 m\V. The range of applied voltage was from zero to a maximum of approximately
200 mV. At the level of loss corresponding to 200 mV to the driver. the pump power
was insufficient to overcome the AOM induced loss. At each increment of voltage to
the AOM driver. the pump power was increased until the laser threshold condition was
met. For each value of voltage applied (mV) to the AOM. threshold pump power was
recorded from the output of the detector in volts. This process was repeated three
times in succession. Fach measurement was converted into data points as {ollows,
['he voltage applied to the AOM driver was converted into percent loss based on the
formula given in Eq. (5.21). The signal from the photodetector was converted into

watts of pump power by using the formula
Watts = [0.9 x signal voltage] x 2.0 (5.2

This formula was determined by calibrating the ontput voltage from the photodetector

against the ontput power readings from the meter on the power supply of the pumyp
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faser. The voltage from the detector was recorded at two values of pump power 1 3
and 10 watts) as indicated on the meter on the power snpplv.  This voltage was
then reduced by the voltage reading obtaine:d from the detector when the incident
heam was blocked with a beam dump and only backgronnd light was detected. This
reduction represented approximately 10% of the “unblocked™ value. The resulting
voltage readings corresponding to the two pump power settings were compared with

the power meter readings to establish a scale factor of = 2.

5.3.3 Results

All the data points of 4 loss with threshold pump power were then plotted and fitted
with a line of minimum regression. The results are shown in Fig. 5.21. The data
points are shown for only two of the three runs to minimize overcrowding of the data
points. The straight line depicts the best fit to all data points. The intercept of
the straight line on the { 453 axis gives the value of ¢.. the intrinsic cavity loss. in
accordance with Eq. (1.534). The measured value for the intrinsic cavity loss ¢ from

th(’S(‘ measurements is

f.o=(2.95 1+ .35)%1. (5.23)

In order to determine the normalized pumping rate R defined by Eq. (1.16). we
measured the slope of the line of regression. As described in Section 1.4, the slope
represents g. the percent gain per pass through the cavity per watt of pump power.

The measured value of ¢ was

g = (0.707T £0.011) % per watt per pass|. 5240

Using this value in Eq. (1.55) with the upper state decay rate determined from the

hirst experiment we find

I= {736+ .38 x W] (5.23)

This experiment also allows ns to estimate the gain cross section of the medinm
with the help of Eq. (1.56). The efficiencies in Eq. (4.36) were estimated as follows.

The quantum efficiency could not be measured directlv, but we estimated it 10 he
o % 0.8 13,26

It
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based on previons experiments (Lo 100 120 The energy efticiency 1y was determined

from Fq. 1 £57) nsing 500 nim as the average wavelength of the pnmp photons and

TS nn as the average wavelength of a laser photon

i~ 0.61 . 5

ot
[

The primary loss in the transmission of the pump beam to the crvstal was from
reflections off the curved cavity mirror prior to the crvstal. Measurements of this
reflected beam compared with the output from pump laser showed a consistent loss

of 23%. This gives an efficiency 1, of
e =0.72. £5.25)

Single pass absorption measurements of the crystal showed that approximately N3 of
the pump beam was absorbed by the crystal over a pumping range of 0.5 to 7.0 watts.
This gives

ns = 0.83. i0.29)

To determine A. the average cross sectional area of the pump beam inside the crystal.

we refer to the mode matching problem described in Section 3.1 and the characteristics

of the spot size at the beam waist given in Section 2.3. For our cavity. the spot size

at the beam waist was estimated to be 25 microns (see Figs. 3.1 and 3.5). Since the
crystal is 2 cm long. we take the average spot size to be at a position 30 mm inside the
crystal £z = 350 mm). To determine the spot size at this location. we use Egs. (2.11)
and 12.49) to obtain

w,,, = 40 microns . 13,30

2IVINg an average cross sectional arca of the pump beam
- -3 ] -
AxHx 1077 em* . (5.31)

Using these values in Eq. ( £.3%), we estimate the the stimulated emission cross section

to be

)—I!)

em? . (5.32)
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5.3.4 Discussion of Results

The close agreement in the measured values for the intrinsic cavity loss £ between
this experiment and the relaxation oscillation experiments suggests that both exper-
imental techniques are reliable. Indeed. a procedure based on variable loss similar 1o
that used in the second set of experiments has been used by Sanchez ¢t al. to measure
the intrinsic loss of a Ti:sapphire laser [11]. However. the technique of determiuing
cavity losses by analvzing the relaxation oscillations of a laser is a new technique that
can be easily applied to other solid state lasers.

For our results. the slightly higher value for the mtrinsic cavity loss from the first
experiment is probably due to an increase in thermal losses with increased pnmping
power. The values of loss from the first set of experiments were measured from data
obtained while the crystal was being pumped with approximately 6.5 watts from the
pump laser (r = 1.39 and W}, = 4.75 watts). Comparing this pump power with the
pump power used in the second set of experiments (see Fig. 5.24), we see that the
data from the second experiment was for the most part obtained using lower pump
powers.

Schulz gives an excellent account of the thermal effects in the Ti:sapphire crystal
in [22]. He estimates that between 30 and 15 percent of the power absorbed by the
crystal is deposited as heat. resulting in thermal lensing and a change in the index of
refraction inside the crystal. Both of these effects have the result of “detuning”™ the
cavity or increasing loss.

The gain cross section has been measured using several different experimental
techniques [1. 38, 40. 11. 12, 13]. The measured values range from 6.5 x 107 cm?
to 1.5 x 1071 ¢m? depending on technique and wavelength used in the measurement.
Onr result agrees well with these measurements.

In this chapter we have described in detail the laser system used to conduct two
different experiments. The simple laser rate equation approximations developed i
(hapter | seem to describe well the dynamical behavior of the Ti:sapphire relaxation
oscillations. The cavity loss experiments confirmed that the intrinsic cavity losses can
be determined from relaxation oscillations. Both sets of experiments open np many

opportunities for studving the dvnamics of Tizsapphire lasers. Some of these will be
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di~cussed in Chapter 7.




Chapter 6

Polarization Properties of Gaussian Beams

Our treatment of laser beams in Chapter 2 was within the framework of the scalar
wave equation (2.7) and the paraxial approximations (2.23) and (2.24). For most
applications which do not involve the polarization properties of laser beams. this
framework is quite adequate. Indeed, the cavity design and experiments described
in this thesis were developed within this framework. When describing the polariza-
tion properties of laser beams however, a scalar representation is inadequate. Fven
for a linearly polarized laser beam. a scalar description of a finite cross section laser
beam is inconsistent with Maxwell’s equations (2.1)-(2.4). The transverse nature
of the electromagnetic field expressed by Eqs. (2.1) and (2.3) implies that the spa-
tial variation of the field in directions transverse to the direction of propagation is
coupled to the polarization properties of the field. Thus it is well known that spa-
tial variation of the field in the direction of polarization gives rise to a longitudinal
field component [414]. This coupling of the transverse spatial variation of nonplanar
wavefronts to polarization was investigated in an interesting paper by Fainman and
Shamir {43]. They analyzed the cross polarization in « spherical wavefront from a
point source. They also recorded experimentally the cross polarization of a linearly
polarized fundamental Gaussian beam passing through a pin hole. Simon. Sudar-
<han and Mukunda [44] used an analysis of Maxwell’s equations in the relativistic
front form to establish the polarization properties of the fundamental Gaussian laser
beams. Several other approaches to this problem have been discussed. including po-
tential formulation of Maxwell's equations [46. 47] and a power series expansion of
electromagnetic fields [43]. In this chapter, we present another approach to this prob-
tem. Our approach is simpler and more direct and allows us to establish the general

polarization structure of paraxial Hermite—Gaussian modes of a laser. We also present
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experimental evidence for this striucture using the linearly polarized beam from an

argon 1on laser.

6.1 Paraxial Solutions to Maxwell’s Equations

in Chapter 2. we derived the paraxial wave equation (2.26) and developed a solution
representing the basic characteristics of Gaussian beams. In this section. we deter-
mine the form of paraxial solutions to Maxwell's equations which allow ns to betier
represent the polarization properties of laser beams. For quasi- monochromatic fields
propagating in the >-direction. we write the electric and magnetic fields of the wave
as

E(r.t) = E(r)et* =<0 = (E/(r)é; + E.(r)é, + Ey(r)éy) =t (6.1
B(r.t) = B(r)e'™ === = (By(r)é, + Byr)é, + Bs(r)és) ¢!+ (6.2)
Here E(r) and B(r) describe the transverse spatial profile of the beam and ¢,. . and

¢ re unit vectors along the r. y, and z-axes respectively. For the fields in Eqs. (6.1}

aid (6.2) Maxwell's equations in free space become

ikEs(r)+ ¥V -E(r) = 0. 16.3)
théy x E(r)+ V x E(r) = keB(r) . (b 1)
thBs(r)+V -B(r) = 0. (6.5)
thés x B(r)+ V x B(r) = —z'éE(r) . (G.6)

Fromn these equations we see that each cartesian component of the electric and mag-
netic field satisfies the scalar wave equation (2.7). For paraxial beam like solutions.
the inequalities defining the paraxial approximation Eqs. (2.23) and (2.21) hold for
each field component and each component satisfies the paraxial wave eqnation (2.26).
These components are not arbitrary. Thev are coupled via Eqs. (6.3)-(6.6). In the
paraxial approximation of Eqs. (2.23) and (2.24). Eqs. (6.3) and (6.3} allow us to

express the longitudinal field components in terms of the transverse field components

 (OF I,
Fyr) = - (’) ‘+i-—:> _ (6.7)

k\ o iy

~9







IMAGE EVALUATION
TEST TARGET (MT-3)

‘®
\\.\Q//
A\
Z
o
b~
g
o0
EEERE »
B“—E”lbmm == CmswknnﬂUv
= W A WM DN
- A<cZ2T
< = 3 Voad ¥R
LE IE 2% IN &
= = = < o
_ = == W w
o
o
X
o.

¥ |y \\\9%/ . ,m»»»\.,,» \\\OM
%&%&WA&V&W\%




B. = —|—+—]. 6.3
) k < dr * Ay ) 1o-=)

where we have used the inequality from bq. (2.23) in arriving at these equations,
Using Eq.(6.1) we can express the magnetic neld components in terms of the

electric field components as

. | (9*F, O*FE, 1 0°F, L
Bilr) = —Eat 252 ( dyr 2 p().r()y ) 6.9
1 [(0°E, O*FE, 1 9*F), ,
cBy(r) = E;+ 5T%] ( P ~ o) T l\'_th'f}y . {6.10)
i {OFE, OF,
Byr) = —+(%f2_ 04\ ._
cBj(r) T ( 5r Oy ) (6.11)

Similarly. using Eq. (6.7) and the paraxial wave equation (2.26) in Eq. {6.6). we can

express the electric field components in terms of the magnetic field components

1 (8B, #B,\ 1 &B, .
E\(r) = C[B2+2_k2-(51'_2—-_'()y—2> —pm . {6.12)
1 (0*B; 9°B 1 9°B, o
Ex(r) = C[_Bl+'_2—/€—2(—0-1_?2——73;2_ _-A:;a.r(')y . (6.13)
e 0B, 0B,
Es(r) = A (—5;-— ay) . {6.11)

In writing Egs. (6.7) and (6.8), we have kept terms up to 1/(kw)*, where w is some
characteristic length scale associated with the transverse beam profile. An inspection
of these equations shows that the electric and magnetic field components can be
expressed in terms of two solutions of the paraxial wave equation (2.26). Let us

denote these solutions of the paraxial scalar wave equation by f(r) and ¢(r). then

Eir) = 0+ o (a;i(.f) - a;’;(f)) n 7%%;7’ . (6.15)
Ey(r) = g(r)- 171‘3 (a;‘i(:) - 6289;2”) Ei—z()()zj(();) : (6.16)
Es(r) = ;—;(dg:) + 0?;;‘) . (6.17)
cBi(r) = —g(r)+ U:_z (ag?y(;) - a:)‘if‘,r)) —zi—(gf(();) . (6.18)
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I [d*f(r)  d*f(r) L d*yir)

cBatr) = f””w( Dyt ox ) T2 aroy (61
(0 )

Bar) = -1 (‘*‘5‘:)_({)‘;)) . (6.20)

One can easily check that Eqgs. (6.13)-(6.20) satisfy the paraxial Maxwell’s equa-
tions (6.3)-(6.6) up to terms of order 1/{kw)?. We now consider some explicit exam-

ples of these solutions.

6.2 Linearly Polarized Electromagnetic Waves

From Eqgs. (6.15)-(6.20) we see that finite cross section electromagnetic waves. in
general, have a longitudinal field component. In this sense it is not possible to have
pure transverse electromagnetic beams. However. since the longitudinal component
is smaller by a factor of 1/kw compared to the transverse fields. it is possible to have
beams that have dominant transverse polarization. We now examine the form of a
linearly polarized electromagnetic beam.

Without loss of generality, we take the direction of dominant polarization to be

the r-direction. Then. choosing
f(r) = vpn(r) and g(r)=0. {6.21)

we find Eqgs. (6.15)-(6.17) take the form

Egmn)(r) = ~’1mn l?'mn(r) . (622)
1 P*vpma(r)

{mn) mn I
E2 (r) zzj——()l()y (6.23)
mn 0 “mn .
£ (p) = L 2mall) (6.21)

k dr
where v,,(r) is given by Eq. (2.58).

In writing Eq. (6.22) we have dropped terms involving second order derivatives
of vn(r) since compared to the first order terms they are smaller by the factor
1/(kw)?. The leading term in the cross-polarization term ES"(r) is smaller by the

factor 1/(kw)? compared to the E;-component. It is kept here because if the beam

-1




given by Eqs. 16.22) (6.21) is passed throngh a crossed polarizer. then £1""'(r) is the
only term that is transmitted. The longitudinal term is smaller by the factor 1/kw
compared to the dominant transverse component.

The magnetic field components corresponding to Eqs. (6.22)-(6.21) are obtained

by the relations

cBTYr) = EMr). (6.25)
cBy () = E['(r), (6.26)

o . l’ (')b‘mn(r) . _
(’Bg (I‘) = ‘L-‘:j_y . (6.27)

Using the properties of Hermite polynomials we can write down explicit expressions

for E{™(r) and E{™™(r) as

E™M () = Anatmalr) . (6.28)
A
E(m") = . (4mny -1 = 2mi, - -
( ) 4(A1L‘) ( m—1l.n~1 m—1l.n+1
2N mttn~1 + Vmdtintl) - {6.29)
mn) l . ) o
E}; nn (r) = Amnm(znw‘m—l.n — Vmsln) - (6.30)

These equations explicitly indicate the relative magnitudes of various field compo-
nents. A more quantitative measure of the relative strengths of various field compo-
nents is obtained by comparing the powers associated with different field components.
Let the total power associated with the beam be P,. Then the power associated with

different electric field components is found to be

1 P, .
P= cecRe // EiEydedy = 5. (6.31)
P, 2m+ 1)(2n + 1) .
p = b (6.32
: 2 Hkw, ) ' !
.)‘
P, = P, @m+1) (6.33)

Bl (ku,)?
It follows from these equations that the power associated with different field compo-
nents is a constant of propagation. that is. it is independent of :. Equations (6.31)

(6.33) together with Egs. (6.28)-(6.30) show that an electromagnetic beam predom-

inantly polarized in the r-direction has a small cross-polarization component in the
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y-direction in addition to a small longitudinal component. The longitudinal field
component is smaller by a factor of 1/kw and the cross-polarization field component
is smaller by a factor of 1/(kw)? compared to the dominant polarization component.
From these considerations it is clear that a pure transverse linearly polarized electro-
magnetic beam is the geometrical optics limit (hw — oc) of Egs. (6.28) and (6.29).
In general. for finite cross-section beams. both the cross-polarization and longitudinal
field components must be kept for consistency with Maxwells equations.

The presence of longitudinal field components is also required for a correct de-
scription of energy flow in the beam. Energy flow in a beam is described in terms of
rays. which are curves along which energy is transported. The tangent to these curves
at a given point indicates the direction of energy flow of the Povnting vector. For an
electromagnetic beam, rays should converge as thev approach a focal region (beam
waist) and diverge as they leave the focal region. The Poynting vector averaged over
an optical cycle is

S = —¢,c*Re (E x B) . (6.31)

)o—

Using the fields given by Eqs. (6.28)-(6.30) and certain recursion relations for Hermite

polynomials. we find that the Poynting vector for the beam can be written as

S = éfoczlAmnlzlwmn(r)l(z [%él + %62 + ‘:.‘3] - (()53)

r

The quantity before the square brackets is simply the beam intensity (watts/m?*).
The vector inside the square brackets denotes the direction of energy flow. It we
recall that the radius of curvature is negative for a converging wave and positive tor
a diverging wave. it follows from Eq. (6.33) that for a beam approaching the beam
waist (focal region). energy flow occurs toward the > axis and away from the = axis as
it leaves the focal region. If the longitudinal component of the fields is ignored. then
the energy flow occurs only along the z-axis and such a beam is not only inconsistent
with Maxwell's equations. but also does not provide a correct description of focusing
properties of laser beams. From Eq. (6.35) we find the equation for the family of rays
is

p=pflz]z)%+1 (6.36)




where p = o7 + 42 and p, is the distance of the ray from the beam axis at the beam

waist = = ().

The eross-polarization component is even smaller than the longitudinal compo-
nent. If polarization properties of the wave are not of interest. it may be ignored.
For a correct description of polarization properties however. the cross-polarization
component must he kept. For example. if the beam passes through a linear polar-
izer whose axis is crossed with respect to the dominant direction of polarization. the
cross-polarization component is the dominant component in the transmitted beam.

It is also interesting to compare the distribution of fields in a plane transverse to
the direction of propagation. In general. the transverse distribution of fields evolves
during propagation. It is interesting to note that this evolution does not involve
a change in the energy associated with the field. This follows from Eqs. (6.31)-
(6.33) where we showed that the power associated with each field component remains
constant during propagation. Expressions for the transverse distribution of fields are

complicated in general. In the far zone however, the fields take the form

2 dr 2 2 [, Ly
E{™(r) = Am,,(—l)"““”“\/?‘_wzflm (‘/u- )Hn (—-‘/1:-’/)6:&; 1 (6.37)

1 2ry

E}(mn) V= (mn) ) 6.3%
2 (T) G w? £y (r) ( |
mn Qi ‘1‘ Mmn N

B = (lcuf-)Ebi (r) . (6.39)

These field components lead to the following distributions for the intensities

2P ors 5 o
hir) = e .f{,‘il(v“’)ﬂ;f(@)f""”/”‘. (6.40)

2mtn 2y Zntm! w
1 f2y2
v = e . 6.11
Iy(r) (Fay)t o Iy(r) (6.41)
2
Lir) = ——X1(r). (6.12)

(kw,)? w?

Figures 6.1. 6.2, and 6.3 show these intensity distributions for TE Mgy mode Gaussian
beams. For each of these figures. the z-axis scale is arbitrary and not related between

figures. In the next section we look at the form of a circularly polarized wave.
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Figure 6.1: A\ 3-dimensional profile of the intensity distribution of a linearly polarized
TEMgo mode Gaussian beam as defined by Eq. (6.40). The :-axis scale is arbitrary
and not related between Figs. 6.1-6.3.

Figure 6.2: A 3-dimensional protile of the intensity distribution of a cross polarized
TEMoo mode Gaussian beam as defined by Eq. (6.41). The z-axis scale is arbitrary.
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Figure 6.3: A 3-dimensional profile of the intensity distribution of the longitudinal
component of a TEMy, mode Gaussian beam as defined by Eq. (6.42). The z-axis

scale 1s arbitrary.

6.3 Circularly Polarized Electromagnetic Waves

For a circularly polarized wave, we take

f(r)

Umn(T) and g{r) = 1y, (1) .

Then various field components are

E™ ) (r)
E.gm”)(r)

[’:};mn)(r)

44mn

men(r) ,

. Amn '

? 7 Umndl) .

tAnn
2kw,

('Zm‘ll'm_x.n — Um+ian + .-)'inll-‘m.n—l - lt‘m.n%-!) .

(6.43)

(6.44)
(6.15)

(6.16)

In the far zone. these equations lead to the following transverse intensity distributions

[J_(r)E'.?[,(r)z'.Zlg(r) = ——H (

2P,

Qutmyptnt ™ "

2(r? + y?)
[ = ————
(kw,)?u?

w w

I_L(l') .

6.4 Experimental Observations

\/'f-r) i (\/‘-7!/

(6.47)

(6.48)

Experimental observations of the intensity distributions for a linearly polarized laser

beam were made using an argon ion laser operating at 488 nm with a TEMy mode.
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Our objective was 1o compare the linearly polarized intensity profile of the laser beam
given by Eq. (6.10) with its cross polarized intensity profile given in Fq. (6.11).

The itensity profile of the laser beam was photographed using a Cohu Inc. 1850
series monochrome solid-state ('(']) camera. The picture was recorded using an [B\I
P(C'" and Beamcode 6.1 software. .\ picture of the linearly polarized beam was taken
with the laser operating at less than 10 milliwatts (minimum scale on the digital
power meter) and the beam attenuated through a neutral density filter with optical
density (OD) 2. Pictures of the beam intensity profile are reproduced in Figs. 6.1
and 6.5. Figure 6.4 shows a 3-dimensional contour of the beam intensity and Fig. 6.5
shows a 2-dimensional planview of the beam intensity. To observe the cross polarized
intensity profile. the laser was operated at approximately 110 milliwatts and the beam
was transmitted through two dichroic sheet polarizers. The polarizers were oriented
so that their polarization axes were orthogonal to each other. Pictures of the cross
polarized beam intensity profile are reproduced in Figs. 6.6 and 6.7. Figure 6.6 shows
the 3-dimensional pattern and Fig. 6.7 shows the 2-dimensional planview. The linear
and cross polarized intensity distributions of Egs. (6.10) and (6.11) can be clearly
seen from these pictures. Due to the fact that the dichroic maternals polarize using
absorption, the relative intensity magnitudes of the beams photographed in Figs. 6.4-
6.7 are undetermined.

In this chapter we have discussed the polarization properties of Gaussian beams
by developing paraxial solutions to Maxwell’s equations. We saw that the field com-
ponents of these solutions were not independent. but coupled by Eqs. (6.3)-(6.6).
This results in the presence of cross polarized and longitudinal fields in the transverse

direction. The presence of the cross polarized field was observed experimentally.
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Figure 6.4: A 3-dimensional intensity profile of a linearly polarized TEMy, laser bearn.
The picture was taken from an argon ion laser operating at 438 nm.

Figure 6.3: A 2-dimensional planview of the intensity profile of a linearly polarized
TEMgo laser beam. The picture was taken from an argon ion laser operating at
488 nm.
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Figure 6.6: A 3-dimensional intensity profile of a cross polarized TEM,, laser beam.
The picture was taken from an argon ion laser operating at 488 nm.

Figure 6.7: A 2-dimensional planview of the intensity profile of a cross polarized
TEMgo laser beam. The picture was taken from an argon ion laser operating at
438 nm.




Chapter 7

Conclusions

In this thesis we have reviewed the characteristics of laser propagation and used
those characteristics to develop a method for designing a laser svstem. The unique
characteristics of the Ti:sapphire laser make it an excellent choice for a variety of
research applications. The techniques described in this thesis can he used to de-
sign a Tiisapphire or other type of laser system for specific research applications.
These techniques address the requirements of stability, astigmatism compensation.
and mode matching of the pump and cavity modes.

We also studied some features of the dynamical behavior of Ti:sapphire lasers. To
our knowledge. this is the first study of the relaxation oscillatinns of a Tizsapphire
laser. Using rate equation theory. we developed a method for measuring the upper
state lifetime 7, and intrinsic cavity loss analyzing these oscillations in the Ti:sapphire
laser. Our measured values for these parameters are consistent and in agreement
with the values of the upper state lifetime and the intrinsic cavity loss of our laser
obtained by independent methods. Our method for determining these parameters
from the study of relaxation oscillations presents a new and simple technique which
can be applied to other laser systems as well.

By also using rate equation theorv. we developed a method for modeling the
dyvnamical behavior of lasers. This method scales the laser rate equations in such a
way as to allow numerical solutions from experimentally measured parameters.

We described an experiment for measuring the intrinsic cavity loss by inducing
variable cavit- loss and measuring the pump power required to reach laser threshold.
This exper.mental procedure allows us to also estimate the normalized pumping rate
R. the small signal gain coefficient g. and the stimulated emission cross section 7,

of any laser system.
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Finally we discussed the interesting field of beam-like vector solutions to Maxwell s
equations. ['hese solutions characterize the polarization properties of Gaussian beamn-.
We also saw experimental evidence of the cross polarization intensity profile predicted
by our solutions.

The field of laser dynamics is very rich and the Ti:sapphire laser provides an excel-
lent system for studving many aspects of dvnamical behavior. By varying the depth
and frequency of cavity gain or loss modulation. an investigation into chaotic dynam-
ics. deep spiking oscillations. and generation of specific waveforms can be conducted.
Studies of directional mode competition and bistability can also be carried out on
a laser system similar to the one described in this thesis. Other interesting oppor-
tunities for research include first passage time studies in the scaling regime [19. 50}

antiphase studies, and other multi-mode phenomena.
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